留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

4H-SiC探测器的γ辐照影响研究

李正 吴健 白忠雄 吴锟霖 范义奎 蒋勇 尹延朋 谢奇林 雷家荣

李正, 吴健, 白忠雄, 等. 4H-SiC探测器的γ辐照影响研究[J]. 强激光与粒子束, 2019, 31: 086002. doi: 10.11884/HPLPB201931.180345
引用本文: 李正, 吴健, 白忠雄, 等. 4H-SiC探测器的γ辐照影响研究[J]. 强激光与粒子束, 2019, 31: 086002. doi: 10.11884/HPLPB201931.180345
Li Zheng, Wu Jian, Bai Zhongxiong, et al. Study of gamma irradiation effect on the 4H-SiC detector[J]. High Power Laser and Particle Beams, 2019, 31: 086002. doi: 10.11884/HPLPB201931.180345
Citation: Li Zheng, Wu Jian, Bai Zhongxiong, et al. Study of gamma irradiation effect on the 4H-SiC detector[J]. High Power Laser and Particle Beams, 2019, 31: 086002. doi: 10.11884/HPLPB201931.180345

4H-SiC探测器的γ辐照影响研究

doi: 10.11884/HPLPB201931.180345
基金项目: 

中国工程物理研究院科学技术发展基金项目 2015B0103009

国家自然科学基金项目 11605174

国家自然科学基金项目 11775917

国家自然科学基金项目 11775198

详细信息
    作者简介:

    李正(1994-), 男, 硕士研究生, 从事核探测技术研究, lz54312@163.com

  • 中图分类号: TL816.2

Study of gamma irradiation effect on the 4H-SiC detector

  • 摘要: 为研究4H-SiC探测器的抗γ辐照性能,使用40万Ci级的60Co源对4H-SiC探测器进行了数次辐照,累积辐照剂量最大为1 MGy(Si),并在辐照后对4H-SiC的性能进行了测试。随着累积辐照剂量增加,4H-SiC探测器的正向电流增大,而反向电流恰好相反;根据4H-SiC探测器的正向I-V曲线可提取理想因子和肖特基势垒,理想因子从1.87增加到2.18,肖特基势垒从1.93 V减小至1.69 V;4H-SiC探测器对241Am源产生的α粒子进行探测时,探测器的电荷收集率从95.65%退化到93.55%,测得能谱的能量分辨率由1.81%退化到2.32%。4H-SiC探测器在受到1 MGy(Si)的γ辐照后,与未受到辐照时相比,在探测能量为5.486 MeV的α粒子时能量分辨率和电荷收集率仅退化了28.18%和2.2%,仍具备优良的探测性能。
  • 图  1  4H-SiC肖特基二极管的结构

    Figure  1.  Structure of 4H-SiC Schottky diode

    图  2  I-V测试和α能谱测量实验设置

    Figure  2.  Experiment setup for I-V and α spectrum measurement

    图  3  辐照后4H-SiC探测器的正向I-V曲线

    Figure  3.  Forward I-V curves of 4H-SiC detector after each irradiation

    图  4  辐照后4H-SiC探测器的反向I-V曲线

    Figure  4.  Reverse I-V curves of 4H-SiC detector after each irradiation

    图  5  4H-SiC探测器辐照后对241Am源的响应

    Figure  5.  Response to α particles from 241Am after each irradiation of 4H-SiC detector

    表  1  辐照后器件的理想因子与肖特基势垒

    Table  1.   Ideal factor and Schottky barrier height after each irradiation

    dose/Gy n φ/V
    0 1.87 1.93
    100 1.89 1.91
    1000 1.89 1.91
    100 000 1.97 1.81
    1 000 000 2.18 1.69
    下载: 导出CSV

    表  2  α能谱的峰值、半高宽和能量分辨率及探测器的电荷收集率

    Table  2.   Peak centroid, FWHM, energy resolution of α energy spectra and charge collection efficiency (CCE) of the detector

    dose/Gy peak centroid FWHM/keV energy resolution/% CCE/%
    0 977.35 99.40 1.81 95.65
    100 970.67 114.87 2.09 95.02
    1000 968.27 123.52 2.25 94.79
    100 000 963.73 115.15 2.10 94.36
    1 000 000 955.23 127.37 2.32 93.55
    下载: 导出CSV
  • [1] Sciortino S, Cindro V, Hartjes F, et al. Effect of heavy proton and neutron irradiations on epitaxial 4H-SiC Schottky diodes[J]. Nuclear Inst & Methods in Physics Research A, 2005, 552(1): 138-145. https://www.sciencedirect.com/science/article/pii/S0168900205011897
    [2] Wu J, Lei J, Jiang Y, et al. Feasibility study of a SiC sandwich neutron spectrometer[J]. Nuclear Inst & Methods in Physics Research A, 2013, 708(708): 72-77. https://www.sciencedirect.com/science/article/pii/S016890021300065X
    [3] De Napoli M, Giacoppo F, Raciti G, et al. Study of charge collection efficiency in 4H-SiC Schottky diodes with 12C ions[J]. Nuclear Inst & Methods in Physics Research A, 2009, 608(1): 80-85.
    [4] Seshadri S, Dulloo A R, Ruddy F H, et al. Demonstration of an SiC neutron detector for high-radiation environments[J]. IEEE Trans Electron Devices Ed, 1999, 46(3): 567-571. doi: 10.1109/16.748878
    [5] Park S H, Park J S, Seo H, et al. Development of SiC detector for the harsh environment applications[C]//IEEE Nuclear Science Symposium & Medical Imaging Conference. 2013.
    [6] Kalinina E V, Strokan N B, Ivanov A M, et al. 4H-Si Chigh temperature spectrometers[C]//Materials Science Forum. 2007.
    [7] Nava F, Vittone E, Vanni P, et al. Radiation tolerance of epitaxial silicon carbide detectors for electrons, protons and gamma-rays[J]. Nuclear Inst & Methods in Physics Research A, 2003, 514(1/3): 126-134. https://www.sciencedirect.com/science/article/pii/S0168900202015589
    [8] Kinoshita A, Iwami M, Kobayashi K I, et al. Radiation effect on pn-SiC diode as a detector[J]. Nuclear Inst & Methods in Physics Research A, 2005, 541(1): 213-220. https://www.sciencedirect.com/science/article/pii/S0168900205000719
    [9] 张林, 肖剑, 邱彦章, 等. Ti/4H-SiC肖特基势垒二极管抗辐射特性的研究[J]. 物理学报, 2011, 60: 056106. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201105083.htm

    Zhang Lin, Xiao Jian, Qiu Yanzhang, et al. Radiation effect on Ti/4H-SiC SBD of gamma-ray, electrons and neutrons. Acta Physica Sinica, 2011, 60: 056106) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201105083.htm
    [10] 张林, 张义门, 张玉明, 等. Ni/4H-SiC肖特基势垒二极管的γ射线辐照效应[J]. 物理学报, 2009, 58(4): 2737-2741. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200904096.htm

    Zhang Lin, Zhang Yimen, Zhang Yuming, et al. Gamma-ray radiation effect on Ni/4H-SiC SBD. Acta Physica Sinica, 2009, 58(4): 2737-2741) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200904096.htm
    [11] Table of radioisotopes in radiation safety reference manual[EB/OL]. https://www.vumc.org/safety/about/safety/safety/safety/rad.
    [12] Sze S M. Physics of semiconductor devices[M]. 2nd ed. New Jersey: Wiley, 1981.
    [13] Claeys C, Simoen E. 先进半导体材料及器件的辐射效应[M]. 北京: 国防工业出版社, 2008.

    Claeys C, Simoen E. Radiation effects in advanced semiconductor materials and devices. Beijing: National Defense Industry Press, 2008)
    [14] Kang S M, Ha J H, Park S H, et al. Study of the current-voltage characteristics of a SiC radiation detector irradiated by Co-60 gamma-rays[J]. Nuclear Instruments & Methods in Physics Research, 2007, 579(1): 145-147. https://www.sciencedirect.com/science/article/pii/S0168900207005967
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1164
  • HTML全文浏览量:  217
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-30
  • 修回日期:  2019-04-28
  • 刊出日期:  2019-08-15

目录

    /

    返回文章
    返回