留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LiNi1-x-yCoxMnyO2正极材料的制备与电化学性能

朱余银 李晶

朱余银, 李晶. LiNi1-x-yCoxMnyO2正极材料的制备与电化学性能[J]. 强激光与粒子束, 2019, 31: 059001. doi: 10.11884/HPLPB201931.180352
引用本文: 朱余银, 李晶. LiNi1-x-yCoxMnyO2正极材料的制备与电化学性能[J]. 强激光与粒子束, 2019, 31: 059001. doi: 10.11884/HPLPB201931.180352
Zhu Yuyin, Li Jing. Preparation and electrochemical performances of ternary LiNi1-x-yCoxMnyO2 cathode material[J]. High Power Laser and Particle Beams, 2019, 31: 059001. doi: 10.11884/HPLPB201931.180352
Citation: Zhu Yuyin, Li Jing. Preparation and electrochemical performances of ternary LiNi1-x-yCoxMnyO2 cathode material[J]. High Power Laser and Particle Beams, 2019, 31: 059001. doi: 10.11884/HPLPB201931.180352

LiNi1-x-yCoxMnyO2正极材料的制备与电化学性能

doi: 10.11884/HPLPB201931.180352
基金项目: 

国家高技术发展计划项目 2013AA0509

西南科技大学博士基金项目 18zx712201

西南科技大学学科建设软科学研究项目 18sxb08501

详细信息
    作者简介:

    朱余银(1977-),男,博士,讲师,主要从事矿物材料研究; jsjyzyy@126.com

    通讯作者:

    李晶(1975-),男,博士,教授,主要从事锂离子电池与超级电容器研究; xy13787103391@126.com

  • 中图分类号: TQ152

Preparation and electrochemical performances of ternary LiNi1-x-yCoxMnyO2 cathode material

  • 摘要: LiNi1-x-yCoxMnyO2正极材料作为最有商业化前途的锂离子电池正极材料,近年来成为研究者关注的焦点。但目前针对该材料合成工艺的研究还较少。对LiNi0.8Co0.15Mn0.05O2开展了不同的烧结工艺研究,并对制备出的正极材料进行了表征和性能测试。研究发现在0.1C (电池容量额定值)倍率下充放电比容量为200 mA·h·g-1左右,在1C倍率循环100次下,480 ℃@3 h + 780 ℃@5 h和500 ℃@5 h + 780 ℃@10 h两种烧结工艺下容量保持率分别为94%和86%,说明用这两种工艺制备的正极材料的综合性能最优。
  • 图  1  不同烧结工艺下的正极材料SEM图

    Figure  1.  SEM images of cathode material under different sintering processes

    图  2  不同烧结工艺下正极材料的XRD图谱

    Figure  2.  XRD spectra of cathode material under different sintering processes

    图  3  不同烧结工艺下正极材料在0.1C下的首次充放电曲线

    Figure  3.  The first charging and discharging curve at 0.1C of cathode material under different sintering processes

    图  4  不同烧结工艺下正极材料在1C下的循环充放电曲线

    Figure  4.  The charging-discharging cycles at 1C of cathode material under different sintering processes

    图  5  不同烧结工艺下正极材料的倍率性能曲线

    Figure  5.  The rate capability curve of cathode material under different sintering processes

    图  6  不同烧结工艺下材料组装电池的EIS曲线

    Figure  6.  The EIS curve of the battery of cathode material under different sintering processes

    图  7  循环3周/100周后各材料所装电池的循环伏安曲线

    Figure  7.  cyclic voltammetry curve of the battery loaded by each material after 3 cycles /100 cycles

    表  1  正极材料LiNi0.8Co0.15Mn0.05O2的烧结工艺

    Table  1.   Sintering process of cathode material LiNi0.8Co0.15Mn0.05O2

    No presintering temperature/℃ presintering time/h calcination temperature/℃ calcination time/h remarks
    1 20→480(120 min) 3 480→780 (60 min) 5 cooling
    2 20→480(120 min) 5 480→780(60 min) 10 cooling
    3 20→480(120 min) 3 480→800(64 min) 5 cooling
    4 20→480(120 min) 5 480→800(64 min) 10 cooling
    5 20→500(124 min) 3 500→780(56 min) 5 cooling
    6 20→500(124 min) 5 500→780(56 min) 10 cooling
    7 20→500(124 min) 3 500→800(60 min) 5 cooling
    8 20→500(124 min) 5 500→800(60 min) 10 cooling
    下载: 导出CSV

    表  2  不同烧结工艺下正极材料的NCM晶格参数

    Table  2.   NCM lattice parameters of cathode material under different sintering processes

    sample a/nm c/nm c/a I(003) I(104) R=I(003)/I(104)
    480 ℃@3 h+780 ℃@5 h 0.250 74 1.409 47 5.621 2 100 54.2 1.845 0
    480 ℃@3 h+800 ℃@5 h 0.250 48 1.410 10 5.629 6 100 51.0 1.960 8
    500℃@3 h+780 ℃@5 h 0.286 45 1.410 94 4.925 6 100 57.4 1.742 2
    500℃@3 h+800 ℃@5 h 0.286 38 1.407 10 4.913 4 100 58.9 1.697 8
    480 ℃@5 h+780 ℃@10 h 0.250 39 1.410 24 5.632 2 100 54.9 1.821 5
    480 ℃@5 h+800 ℃@10 h 0.250 56 1.409 18 5.624 1 100 63.1 1.584 8
    500℃@5 h+780 ℃@10 h 0.286 20 1.407 21 4.916 9 100 47.6 2.100 8
    500℃@5 h+800 ℃@10 h 0.286 37 1.411 11 4.927 6 100 57.5 1.739 1
    下载: 导出CSV

    表  3  不同烧结工艺下正极材料EIS拟合结果

    Table  3.   EIS fitting results of cathode material under different sintering processes

    sample electrolyte resistivity/Ω RSEI resistency/Ω Rct
    480 ℃@3 h+780 ℃@5 h 135.40 171.70 211.50 366.20
    480 ℃@3 h+800 ℃@5 h 153.50 310.60 146.60 44.84
    500℃@3 h+780 ℃@5 h 90.93 43.19 100.30 293.60
    500℃@3 h+800 ℃@5 h 0.001 253 237.40 218.50 111.10
    480 ℃@5 h+780 ℃@10 h 3.933 271.00 86.11 20.65
    480 ℃@5 h+800 ℃@10 h 0.544 1 31.76 134.50 460.50
    500℃@5 h+780 ℃@10 h 17.00 36.86 360.60 80.89
    500℃@5 h+800 ℃@10 h 27.21 312.7 47.51 276.70
    下载: 导出CSV

    表  4  各材料CV曲线对应的主要氧化还原峰电位及电位差

    Table  4.   Main REDOX peak potential and PD corresponding to CV curve of each material

    sample oxidation peak potential/V reduction peak potential/V potential(oxidation peak-reduction peak)/V
    3 cycles 100 cycles 3 cycles 100 cycles 3 cycles 100 cycles
    480 ℃@3 h+780 ℃@5 h 3.733 3.767 3.699 3.669 0.034 0.098
    480 ℃@3 h+800 ℃@5 h 3.760 3.872 3.682 3.628 0.078 0.244
    500℃@3 h+780 ℃@5 h 3.784 3.846 3.670 3.639 0.114 0.207
    500℃@3 h+800 ℃@5 h 3.732 3.817 3.667 3.592 0.065 0.225
    480 ℃@5 h+780 ℃@10 h 3.776 3.859 3.681 3.653 0.095 0.206
    480 ℃@5 h+800 ℃@10 h 3.769 3.828 3.680 3.626 0.089 0.202
    500℃@5 h+780 ℃@10 h 3.794 3.859 3.679 3.644 0.115 0.215
    500℃@5 h+800 ℃@10 h 3.780 3.823 3.680 3.652 0.100 0.171
    下载: 导出CSV

    表  5  三元正极材料电化学性能对比表

    Table  5.   Properties comparison of ternary layered oxide cathode materials

    ternary anode material initial charge-discharge specific capacity at 0.1C magnification/(mA·h·g-1) capacity retention ratio after 100 cycles at 1C/% ref.
    LiNi0.6Co0.2Mn0.2O2 173.0 89.7 [23]
    LiNi0.5Co0.2Mn0.3O2 167.4 89.7 [24]
    LiNi1/3Co1/3Mn1/3O2 152.3 85.8 [25]
    LiNi0.4Co0.2Mn0.4O2 180.7 90.3 [26]
    LiNi1-x-yCoxAlyO2 172.7 92.1 [27]
    LiNi0.8Co0.15Mn0.05O2 200.0 94.0
    下载: 导出CSV
  • [1] 闫金定. 锂离子电池发展现状及其前景分析[J]. 航空学报, 2014, 35(10): 2767-2775. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201410008.htm

    Yan Jinding. Current status and development analysis of lithium-ion batteries. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2767-2775 https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201410008.htm
    [2] Li Yangxing, Wan Chunrong, Wu Yuping, et al. Synthesis and characterization of ultrafine LiCoO2 powders by a spray-drying method[J]. Journal of Power Sources, 2000, 85(2): 294-298. doi: 10.1016/S0378-7753(99)00159-7
    [3] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451: 652-657. doi: 10.1038/451652a
    [4] 庞春会, 吴川, 吴锋, 等. 锂离子电池纳米正极材料合成方法研究进展[J]. 硅酸盐学报, 2012, 40(2): 247-255. doi: 10.14062/j.issn.0454-5648.2012.02.012

    Pang Chunhui, Wu Chuan, Wu Feng, et al. Development on synthesis methods for nano-materials of cathode for lithium ion battery. Journal of the Chinese Ceramic Society, 2012, 40(2): 247-255 doi: 10.14062/j.issn.0454-5648.2012.02.012
    [5] Patil A, Patil V, Shin D W, et al. Issue and challenges facing rechargeable thin film lithium batteries[J]. Mater Res Bull, 2008, 43: 1913-1942. doi: 10.1016/j.materresbull.2007.08.031
    [6] Shukla A K, Kumar T P. Materials for next-generation lithium batteries[J]. Curr Sci, 2008, 94: 314-331.
    [7] Hassoun J, Kim J H, Lee D J. A contribution to the progress of high energy batteries: A metal-free, lithium-ion, silicon-sulfur battery[J]. Journal of Power Sources, 2012, 202: 308-313. doi: 10.1016/j.jpowsour.2011.11.060
    [8] 邹邦坤, 丁楚雄, 陈春华. 锂离子电池三元正极材料的研究进展[J]. 中国科学: 化学, 2014, 44(7): 1104-1115. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK201407005.htm

    Zou Bangkun, Ding Chuxiong, Chen Chunhua. Research progress in ternary cathode materials Li(Ni, Co, Mn)O2 for lithium ion batteries. Scientia Sinica Chimica, 2014, 44(7): 1104-1115 https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK201407005.htm
    [9] 黄可龙, 王兆翔, 刘素琴. 锂离子电池原理与关键技术[M]. 北京: 化学工业出版社, 2008: 1-10.

    Huang Kelong, Wang Zhaoxiang, Liu Suqin. Principle and key technology of lithium ion battery. Beijing: Chemical Industry Press, 2008: 1-10
    [10] 马璨, 吕迎春, 李泓. 锂离子电池基础科学问题(Ⅶ)—正极材料[J]. 储能科学与技术, 2014, 3(1): 53-65. doi: 10.3969/j.issn.2095-4239.2014.01.008

    Ma Can, Lü Yingchun, Li Hong. Fundamental scientific aspects of lithium batteries (Ⅶ)—positive electrode materials. Energy Storage Science and Technology, 2014, 3(1): 53-65 doi: 10.3969/j.issn.2095-4239.2014.01.008
    [11] 章福平, 纪勇, 李安东, 等. 锂离子电池正极材料研究的新动向和挑战[J]. 化学通报, 2011, 74(10): 891. https://www.cnki.com.cn/Article/CJFDTOTAL-HXTB201110005.htm

    Zhang Fuping, Ji Yong, Li Andong, et al. Progresses and challenges in studies on cathodic materials of Li-ion battery. Chemistry, 2011, 74(10): 891 https://www.cnki.com.cn/Article/CJFDTOTAL-HXTB201110005.htm
    [12] Wang Zhao. Studies on Li-excess Mn-based Li1. 2Mn0.54Ni0.13Co0.13O2 as cathode materials for lithium batteries. Beijing: Beijing Institute of Technology, 2015: 1-189
    [13] 周燕芳, 钟辉. 锂离子电池正极材料的研究进展[J]. 材料开发与应用, 2003, 18(2): 34-38. doi: 10.3969/j.issn.1003-1545.2003.02.012

    Zhou Yanfang, Zhong Hui. Research progress in positive electrode materials for lithium ion battery. Development and Application of Materials, 2003, 18(2): 34-38 doi: 10.3969/j.issn.1003-1545.2003.02.012
    [14] Muto S S, Tatsumi K S, Kojima Y J, et al. Effect of Mg-doping on the degradation of LiNiO2-based cathode materials by combined spectroscopic methods[J]. Power Sources, 2012, 205: 449-455. doi: 10.1016/j.jpowsour.2012.01.071
    [15] Cui Y L, Bao W J, Yuan Z, et al. Comparison of different soft chemical routes synthesis of submicro-LiMn2O4 and their influence on its electrochemical properties[J]. Solid State Electrochemistry, 2012, 16(4): 1551-1559. doi: 10.1007/s10008-011-1558-6
    [16] 周文彩, 李金洪, 姜晓谦. 磷酸铁锂制备工艺及研究进展[J]. 硅酸盐通报, 2010, 29(1): 134-146. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201001031.htm

    Zhou Wencai, Li Jinhong, Jiang Xiaoqian. Preparation and research progress of LiFePO4 cathode material. Bulletin of the Chinese Ceramic Society, 2010, 29(1): 134-146 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201001031.htm
    [17] 张新龙, 胡国荣, 彭忠东, 等. 锂离子电池正极材料LiFePO4的研究进展[J]. 电池, 2003, 33(4): 252-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DACI200304020.htm

    Zhang Xinlong, Hu Guo-rong, Peng Zhongdong, et al. Development of LiFePO4 as cathode material of Li-ion battery. Battery Bimonthly, 2003, 33(4): 252-254 https://www.cnki.com.cn/Article/CJFDTOTAL-DACI200304020.htm
    [18] 沙鸥, 赵敏寿, 翟静, 等. 锂离子电池新型正极材料LiFePO4的研究进展[J]. 稀有金属材料与工程, 2009, 38(11): 252-254. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE200911043.htm

    Sha Ou, Zhao Minshou, Zhai Jing, et al. Research progress on LiFePO4—A new type of cathode materials for lithium-ion battery. Rare Metal Materials and Engineering, 2009, 38(11): 252-254 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE200911043.htm
    [19] 翟静, 赵敏寿, 沙鸥, 等. 锂离子电池正极材料Li3V2(PO4)3的研究进展[J]. 稀有金属材料与工程, 2010, 39(7): 1311-1316. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201007040.htm

    Zhai Jing, Zhao Minshou, Sha Ou, et al. Research progress in cathode material Li3V2(PO4)3 for Li-ion batteries. Rare Metal Materials and Engineering, 2010, 39(7): 1311-1316 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201007040.htm
    [20] Li Y J, Hong L, Wu F. Preparation of Li3V2(PO4)3 cathode material for power Li-ion batteries[J]. Progress in Chemistry, 2012, 24(1): 47-53.
    [21] 李龙. 锂离子电池镍钴锰三元正极材料的合成与改性研究[D]. 北京: 清华大学, 2012: 1-54.

    Li Long. Synthesis and modification of LiNixCoyMnzO2 cathode material for lithium battery. Beijing: Tsinghua University, 2012: 1-54
    [22] Ruan Zewen. Synthesis and modification of LiNi1-x-yCoxAlyO2 nickel rich cathode materials. Harbin: Harbin Institute of Technology, 2016: 1-81
    [23] 艾灵, 毛丽萍, 李世友, 等. 三元正极材料LiNi0.6Co0.2Mn0.2O2制备及改性方法进展[J]. 化工新型材料, 2018, 46(5): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201805003.htm

    Ai Ling, Mao Liping, Li Shiyou, et al. Progress on the preparation and modification of LiNi0.6Co0.2Mn0.2O2 ternary anode material. New Chemical Materials, 2018, 46(5): 11-15 https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201805003.htm
    [24] 李尚津. 锂离子电池三元正极材料LiNi0.5Co0.2Mn0.3O2的制备与改性[D]. 南宁: 广西大学: 2017: 1-47.

    Li Shangjin. Preparation and modification of LiNi0.5Co0.2Mn0.3O2 of the lithium ion battery. Nanning: Guangxi University, 2017: 1-47
    [25] 路乃群, 王存国, 王静强, 等. 锂离子电池三元正极材料LiNi1/3Co1/3Mn1/3O2的制备方法及其改性研究进展[J]. 化工科技, 2018, 26(6): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-JKGH201806013.htm

    Lu Naiqun, Wang Cunguo, Wang Jingqiang, et al. Development of the ternary cathode material LiNi1/3Co1/3Mn1/3O2 and its modification for lithium ion batteries. Science & Technology in Chemical Industry, 2018, 26(6): 58-63 https://www.cnki.com.cn/Article/CJFDTOTAL-JKGH201806013.htm
    [26] Wolff-Goodrich S, Lin F, Markus I M, et al. Tailoring the surface properties of LiNi0.4Mn0.4Co0.2O2 by titanium substitution for improved high voltage cycling performance[J]. Physical Chemistry Chemical Physics, 2015, 17(34): 21778-21781.
    [27] 王义飞, 武行兵, 王双双, 等. 三元正极材料LiNi1- x- yCoxAlyO的研究进展[J]. 电池, 2017, 47(2): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DACI201702017.htm

    Wang Yifei, Wu Xingbing, Wang Shuangshuang, et al. Research progress in ternary cathode materials LiNi1-x-yCoxAlyO2. Battery Bimonthly, 2017, 47(2): 112-115 https://www.cnki.com.cn/Article/CJFDTOTAL-DACI201702017.htm
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  1215
  • HTML全文浏览量:  297
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-24
  • 修回日期:  2019-03-11
  • 刊出日期:  2019-05-15

目录

    /

    返回文章
    返回