Analysis on array antenna self-repair based on different fitness functions
-
摘要: 由大量阵元组成的阵列天线其性能受不断出现的失效阵元影响,可通过进化重配置阵列中剩余正常阵元激励实现性能修复。分析了阵列天线进化重配置过程,综合分析了自修复过程中评价函数类型,设计了不同评价函数分析流程,通过Chebyshev直线阵的自修复仿真实验,分析了不同评价函数对阵列天线自修复结果的影响,分析结果表明,基于性能参数的评价函数和方向图匹配与性能参数相结合评价函数具有较好性能,该分析结果为具有失效阵元的阵列天线自修复中评价函数选择提供了参考。Abstract: The performance of array antenna with a large number of elements is affected by the emerging failure elements, and the performance restoration can be achieved by the evolution of the remaining normal elements through evolutionary reconfiguration. The array antennas' evolutionary reconfiguration is analyzed. The fitness function types in self-repair process are analyzed. The evaluation process of different fitness functions is designed. Through the self-repair simulation experiment of a Chebyshev linear array, the self-repair results of array antennas with different fitness functions are analyzed. The analysis result shows that the fitness function based on performance parameters and the combination of pattern matching and performance parameters have better performance. The analysis result provides a reference for the fitness function selection in array antenna self-repair.
-
Key words:
- antenna array /
- self-repair /
- fitness function /
- failed element /
- evolution
-
表 1 不同评价函数下阵列天线自修复结果统计
Table 1. Array antenna self-repair result under different fitness functions
fault position fitness function repair time/s (mean/standard deviation) maxSLL/dB (mean/standard deviation) avSLL/dB (mean/standard deviation) HPBW/(°) (mean/standard deviation) FNBW/(°) (mean/standard deviation) D/1 (mean/standard deviation) — — — -30.00 -30.00 7.95 21.41 11.79 2 — — -23.94 -26.28 8.26 22.44 11.11 Fw 119.91/12.11 -23.17/2.11 -27.90/0.46 8.67/0.17 22.52/0.98 12.57/0.23 Fp 333.03/36.88 -30.01/0.03 -30.44/0.37 9.16/0.17 25.64/0.76 11.93/0.22 Fpw 338.61/34.75 -30.02/0.03 -30.28/0.15 9.03/0.14 26.96/4.25 12.09/0.20 3 — — -22.10 -24.35 8.23 23.75 12.95 Fw 155.80/17.50 -23.78/1.12 -27.58/0.35 9.16/0.14 25.12/0.73 11.83/0.17 Fp 372.74/47.15 -29.57/0.74 -29.88/0.87 10.02/0.11 28.20/0.44 10.90/0.11 Fpw 378.51/48.86 -29.30/1.39 -29.57/1.50 9.81/0.45 32.67/6.80 11.10/0.53 4 — — -20.50 -21.89 8.12 25.30 12.83 Fw 119.11/8.97 -21.00/0.80 -27.29/0.18 9.45/0.11 26.92/0.56 11.34/0.16 Fp 326.11/22.41 -27.30/2.31 -27.54/2.41 10.17/0.97 28.58/3.26 10.73/1.00 Fpw 329.35/22.52 -28.87/2.85 -29.11/2.96 8.88/1.35 58.80/23.21 11.49/1.12 5 — — -19.22 -20.45 7.98 26.45 12.79 Fw 141.91/14.11 -17.85/1.41 -27.15/0.73 9.23/0.36 28.99/0.84 11.11/0.33 Fp 327.99/32.65 -20.84/0.04 -20.86/0.05 7.97/0.05 21.37/0.07 12.82/0.08 Fpw 336.09/37.63 -27.12/2.38 -27.45/2.70 9.61/1.58 44.18/19.23 10.82/1.25 11 — — -20.50 -21.89 8.12 25.30 12.83 Fw 116.09/4.77 -21.55/2.06 -27.38/0.68 9.64/0.37 27.20/1.27 11.15/0.35 Fp 323.95/14.91 -28.02/1.98 -28.38/2.12 10.52/0.76 29.88/2.58 10.37/0.74 Fpw 329.65/11.53 -29.62/1.44 -30.14/1.70 8.70/1.11 64.60/20.61 11.46/0.79 14 — — -22.10 -24.35 8.23 23.75 12.95 Fw 110.97/0.67 -24.67/1.40 -28.08/0.29 9.21/0.18 25.64/0.84 11.76/0.22 Fp 309.84/0.71 -29.45/1.34 -30.01/1.53 9.93/0.38 27.93/1.35 11.00/0.42 Fpw 314.14/0.55 -29.84/0.47 -30.46/0.78 9.91/0.16 34.98/6.47 10.98/0.15 16 — — -25.52 -29.22 8.32 21.73 11.17 Fw 151.22/18.38 -23.93/1.64 -28.37/0.34 8.56/0.17 22.14/0.98 12.75/0.25 Fp 365.52/61.14 -30.03/0.04 -30.74/0.47 8.64/0.03 23.41/0.12 12.69/0.05 Fpw 373.55/53.38 -30.02/0.02 -30.62/0.28 8.63/0.03 23.92/2.21 12.71/0.04 -
[1] Wang Qiankun, Chai Changchun, Xi Xiaowen, et al. Damage effect and mechanism of Darlington tubes caused by intense electromagnetic interference[J]. High Power Laser and Particle Beams, 2018, 30: 083008. doi: 10.11884/HPLPB201830.170472 [2] 乔治军, 潘绪超, 何勇, 等. 高功率电磁脉冲对无人飞行器的毁伤破坏[J]. 强激光与粒子束, 2017, 29: 111201-111202. doi: 10.11884/HPLPB201729.170216Qiao Zhijun, Pan Xuchao, He Yong, et al. Damage of high power electromagnetic pulse to unmanned aerial vehicles. High Power Laser and Particle Beams, 2017, 29: 111201 doi: 10.11884/HPLPB201729.170216 [3] 刘璐瑶, 马弘舸, 闫二艳. 多腔体复杂系统电磁脉冲耦合统计特性[J]. 强激光与粒子束, 2016, 28: 123201. doi: 10.11884/HPLPB201628.160421Liu Luyao, Ma Hongge, Yan Eryan. Statistical characteristics of electromagnetic pulse coupling with multi-cavity system. High Power Laser and Particle Beams. 2016, 28: 123201 doi: 10.11884/HPLPB201628.160421 [4] Yang Y Y, Stark H. Design of self-healing arrays using vector-space projections[J]. IEEE Trans Antennas and Propagation. 2001, 49(4): 526-534. doi: 10.1109/8.923311 [5] Acharya O P, Patnaik A. Antenna array failure correction[J]. IEEE Antennas and Propagation Magazine. 2017, 59(6): 106-115. doi: 10.1109/MAP.2017.2752683 [6] Keizer W P M N. Low sidelobe phased array pattern synthesis with compensation for errors due to quantized tapering[J]. IEEE Trans Antennas and Propagation, 2011, 59(12): 4520-4524. doi: 10.1109/TAP.2011.2165509 [7] Chou H T, Cheng D Y. Beam-pattern calibration in a realistic system of phased-array antennas via the implementation of a genetic algorithm with a measurement system[J]. IEEE Trans Antennas and Propagation, 2017, 65(2): 593-601. doi: 10.1109/TAP.2016.2635630 [8] Han J H, Lim S H, Myung N H. Array antenna TRM failure compensation using adaptively weighted beam pattern mask based on genetic algorithm[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 18-21. doi: 10.1109/LAWP.2011.2181475 [9] Patidar H, Mahanti G K, Muralidharan R. Synthesis and failure correction of flattop and cosecant squared beam patterns in linear antenna arrays[J]. Journal of Telecommunications and Information Technology, 2017 (4): 25-30. [10] Liang S, Feng T, Sun G. Sidelobe-level suppression for linear and circular antenna arrays via the cuckoo search-chicken swarm optimization algorithm[J]. IET Microwaves, Antennas & Propagation, 2017, 11(2): 209-218. [11] Muralidharan R, Vallavaraj A, Mahanti G K, et al. QPSO for failure correction of linear array of mutually coupled parallel dipole antennas with desired side lobe level and return loss[J]. Journal of King Saud University—Engineering Sciences, 2017, 29(2): 112-117. doi: 10.1016/j.jksues.2015.05.001 [12] 仇永斌, 黄显林, 张树春, 等. 平面阵列方向图优化的改进PSO算法[J]. 电子与信息学报, 2017, 39(10): 2340-2345. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201710008.htmQiu Yongbin, Huang Xianlin, Zhang Shuchun, et al. Modified PSO algorithm for planar arrays pattern optimization. Journal of Electronics & Information Technology, 2017, 39(10): 2340-2345 https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201710008.htm [13] Mandal S K, Patra S, Salam S, et al. Failure correction of linear antenna arrays with optimized element position using differential evolution[C]//Proceedings of 2016 IEEE Annual India Conference (INDICON). 2016: 1-5. [14] Muralidaran R, Vallavaraj A, Patidar H, et al. Failure correction of linear array antenna with multiple null placement using cuckoo search algorithm[J]. ICTACT Journal on Communication Technology, 2014, 5(1): 877-881. doi: 10.21917/ijct.2014.0124 [15] Yadav K, Rajak A K, Singh H. Array failure correction with placement of wide nulls in the radiation pattern of a linear array antenna using iterative fast Fourier transform[C]//Proceedings of 2015 IEEE International Conference on Computational Intelligence & Communication Technology. 2015: 471-474. [16] Yang K, Zhao Z Q, Liu J Z, et al. Robust adaptive beam forming using an iterative FFT algorithm[J]. Signal Processing, 2014, 96: 253-260. doi: 10.1016/j.sigpro.2013.09.003 [17] Mailloux R J. Phased array antenna handbook[M]. 2nd ed. Norwood: Artech House, 2005: 109-128. [18] Robinson J, Rahmat-Samii Y. Particle swarm optimization in electromagnetics[J]. IEEE Trans Antennas and Propagation, 2004, 52(2): 397-407. doi: 10.1109/TAP.2004.823969 [19] Yeo B K, Lu Y. Array failure correction with a genetic algorithm[J]. IEEE Trans Antennas and Propagation, 1999, 47(5): 823-828. doi: 10.1109/8.774136 [20] 王玲玲, 方大纲. 运用遗传算法结合FFT进行多单元失效阵列校准[J]. 电波科学学报, 2005, 20(5): 561-565.Wang Lingling, Fang Dagang. Combination of genetic algorithm (GA) and fast Fourier transform (FFT) for array failure correction. Chinese Journal of Radio Science, 2005, 20(5): 561-565 [21] Keizer W P M N. Element failure correction for a large monopulse phased array antenna with active amplitude weighting[J]. IEEE Trans Antennas and Propagation, 2007, 55(8): 2211-2218. doi: 10.1109/TAP.2007.902008 [22] Patidar H, Mahanti G K. Failure correction of linear antenna array by changing length and spacing of failed elements[J]. Progress in Electromagnetics Research M, 2017, 61: 75-84. doi: 10.2528/PIERM17072002 [23] Poli L, Rocca P, Oliveri G, et al. Failure correction in time-modulated linear arrays[J]. IET Radar, Sonar and Navigation, 2014, 8(3): 195-201.