留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Christopherson迭代的超精密加工流场分析方法

杨航 马登秋 张强 刘小雍 樊炜 张云飞 黄文 何建国

杨航, 马登秋, 张强, 等. 基于Christopherson迭代的超精密加工流场分析方法[J]. 强激光与粒子束, 2019, 31: 062002. doi: 10.11884/HPLPB201931.180373
引用本文: 杨航, 马登秋, 张强, 等. 基于Christopherson迭代的超精密加工流场分析方法[J]. 强激光与粒子束, 2019, 31: 062002. doi: 10.11884/HPLPB201931.180373
Yang Hang, Ma Dengqiu, Zhang Qiang, et al. Novel fluid field analysis method for ultra-precision machining based on christopherson iteration[J]. High Power Laser and Particle Beams, 2019, 31: 062002. doi: 10.11884/HPLPB201931.180373
Citation: Yang Hang, Ma Dengqiu, Zhang Qiang, et al. Novel fluid field analysis method for ultra-precision machining based on christopherson iteration[J]. High Power Laser and Particle Beams, 2019, 31: 062002. doi: 10.11884/HPLPB201931.180373

基于Christopherson迭代的超精密加工流场分析方法

doi: 10.11884/HPLPB201931.180373
基金项目: 

贵州省教育厅青年科技人才成长项目 黔教合KY字[2017]249

贵州省科技计划项目 黔科合LH字[2017]7081

教育部重点实验室开放基金课题项目 黔教合KY字[2017]385

国家自然科学基金项目 61605182

详细信息
    作者简介:

    杨航(1989—),男,博士研究生,讲师,主要从事超精密加工装备技术与工艺理论研究;yhangde@mail.dlut.edu.cn

  • 中图分类号: TH164

Novel fluid field analysis method for ultra-precision machining based on christopherson iteration

  • 摘要: 随着特种超精密加工技术的发展,复杂流体被越来越多地用于超精密加工工艺中。超精密加工流场分析具有几何特征复杂、流体本构特性多样、流体边界为自有边界等特点,传统流体数值分析方法难以实现可靠分析。从流体的一般特性出发,将D. G. Christopherson提出的非负二阶偏微分系统的超松弛迭代方法用于超精密加工流场分析,建立了适应性与可靠性兼顾的流场分析方法。以磁流变抛光为例,开展了抛光区域压力场数值计算,结果表明所得压力分布形态正确,且分布从x轴正半轴延伸到负半轴,与郑立功等人的实验测定结果一致。另外,基于Kistler力传感器对磁流变抛光过程的法向压力在0.1~0.3 mm浸深段进行了在位测量,发现计算与实验结果偏差均小于20%。表明了该方法的有效性与准确性。
  • 图  1  Bingham模型的同伦曲线变化关系图示

    Figure  1.  Schematic diagram of homotopy curve variation of Bingham model

    图  2  磁流变抛光区域流场参数定义

    Figure  2.  Definition of flow field parameters in magnetorheological finishing area

    图  3  压力场计算结果对比

    Figure  3.  Comparison of pressure field calculation results

    图  4  采用Kistler传感器在位测量磁流变抛光过程的压力

    Figure  4.  In-situ measurement of the pressure during the magnetorheological finishing process with a Kistler sensor

    图  5  不同浸深下实测磁流变抛光过程压力

    Figure  5.  The measured pressure of magnetorheological finishing process at different immersion depths

    表  1  常见磁流变抛光工艺参数

    Table  1.   Common magnetorheological finishing process parameters

    parameters geometry kinematics physics fluid
    ribbon height H/mm ribbon width W/mm wheel diameter D/mm rotation speed n (r·min) fluid viscosity μ fluid density ρ /(kg·m-3) critical Reynolds number Rec
    typical value 1.5 4 300 50 720 Pa·s@50s-1 6000 2300~4000
    下载: 导出CSV
  • [1] Cao Z C, Cheung C F. A study of materials removal mechanisms for fluid jet polishing using computational fluid dynamics modeling[C]//ASPE 2014, 2014: 496-501.
    [2] Hwang Y, HaK G, Kim Y B, et al. Suppression of the inflection pattern in ultraprecision grinding through the minimization of the hydrodynamic force using a toothed wheel[J]. International Journal of Machine Tools and Manufacture, 2016, 100: 105-115. doi: 10.1016/j.ijmachtools.2015.10.009
    [3] Namba Y, Katagiri M. Ultraprecision grinding of potassium dihydrogen phosphate crystals for getting optical surfaces[C]//Proc of SPIE. 1999, 3578: 692-693.
    [4] 李智钢, 鲍振军, 朱衡, 等. 多磨头数控抛光对大口径离轴抛物面镜中频误差的抑制[J]. 强激光与粒子束, 2018, 30: 062003. doi: 10.11884/HPLPB201830.170457

    Li Zhigang, Bao Zhenjun, Zhu Heng, et al. Suppression of medium frequency error of off-axis parabolic mirror with large diameter by multi-head CNC polishing. High Power Laser and Particle Beams, 2018, 30: 062003 doi: 10.11884/HPLPB201830.170457
    [5] Niu H Y, Zhang X J. Research on computer controlled polishing technology of 124 mm aspheric reaction-burned silicon carbide mirror[J]. Optics and Precision Engineering, 2006, 14(4): 539-544. doi: 10.3321/j.issn:1004-924X.2006.04.003
    [6] 李智钢. 计算机数控抛光对大口径离轴抛物面面形PSD的控制[C]//强激光材料与元器件学术研讨会暨激光破坏学术研讨会论文集2016: 312-312.

    Li Zhigang. Computer numerical control polishing on large diameter off-axis paraboloid shape PSD control //Proceedings of the Symposium on Strong Laser Materials and Components and Laser Damage Symposium. 2016: 312-312
    [7] Liu P, Lin B, Li Y, et al. Liquid film characteristic in fluid hydrodynamic fixed abrasive grinding[J]. International Journal of Advanced Manufacturing Technology, 2018, 96(9): 4205-4214.
    [8] Su Y T, Wang S Y, Chao P Y, et al. Investigation of elastic emission machining process: lubrication effects[J]. Precision Engineering, 1995, 17(3): 164-172. doi: 10.1016/0141-6359(94)00014-Q
    [9] Namba Y, Tsuwa H, Wada R. Ultra-precision float polishing machine[C]//CIRP Annals Manufacturing Technology. 1987: 211-214.
    [10] 杨航, 朱正龙, 刘小雍, 等. 通用磁流变抛光斑空间确定性创成方法[J]. 组合机床与自动化加工技术, 2017(3): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHJC201703014.htm

    Yang Hang, Zhu Zhenglong, Liu Xiaoyong, et al. General magnetorheological polishing spot space deterministic creation method. Modular Machine Tools and Automatic Processing Technology, 2017(3): 53-56 https://www.cnki.com.cn/Article/CJFDTOTAL-ZHJC201703014.htm
    [11] Yang H, He J, Huang W, et al. Spot breeding method to evaluate the determinism of magnetorheological finishing[J]. Optical Engineering, 2017, 56(3): 1-6.
    [12] 杨航, 何建国, 黄文, 等. 磁流变抛光去除函数获取的微分解耦方法[J]. 强激光与粒子束, 2015, 27: 082005. doi: 10.11884/HPLPB201527.082005

    Yang Hang, He Jianguo, Huang Wen, et al. Micro-decomposition coupling method obtained by magnetorheological polishing removal function. High Power Laser and Particle Beams, 2015, 27: 082005 doi: 10.11884/HPLPB201527.082005
    [13] Kanish T C, Narayanan S, Kuppan P, et al. Investigations on the finishing forces in magnetic Field Assisted Abrasive Finishing of SS316L[C]//GCMM. 2017: 611-620.
    [14] Zhang F, Yu X, Zhang Y, et al. Experimental study on polishing characteristics of ultrasonic magnetorheological compound finishing[C]// ISAAT. 2009: 235-239.
    [15] Cao Z C, Cheung C F. Theoretical modelling and analysis of the material removal characteristics in fluid jet polishing[J]. International Journal of Mechanical Sciences, 2014, 89: 158-166. doi: 10.1016/j.ijmecsci.2014.09.008
    [16] 施春燕, 袁家虎, 伍凡, 等. 射流抛光多相紊流流场的数值模拟[J]. 强激光与粒子束, 2009, 21(1): 6-10. http://www.hplpb.com.cn/article/id/3822

    Shi Chunyan, Yuan JiaHu, Wu Fan, et al. Numerical simulation of jet polishing multiphase turbulent flow field. High Power Laser and Particle Beams, 2009, 21(1): 6-10 http://www.hplpb.com.cn/article/id/3822
    [17] Hoyng C. New MRF fluid focuses in on 1Å roughness[J]. Laser Focus World, 2014, 50(8): 53-58.
    [18] Ranjan P, Balasubramaniam R, Jain V K. Analysis of magnetorheological fluid behavior in chemo-mechanical magnetorheological finishing (CMMRF) process[J]. Precision Engineering, 2017, 49: 122-135.
    [19] Das M, Jain V K, Ghoshdastidar P S. A 2D CFD simulation of MR polishing medium in magnetic field-assisted finishing process using electromagnet[J]. International Journal of Advanced Manufacturing Technology, 2014, 76(1/4): 173-187.
    [20] Ji S M, Ge J Q, Tan D P, et al. Three-phase abrasive flow polishing and distribution characteristics of bubble collapse[J]. Optics and Precision Engineering, 2018, 26(2): 388-398.
    [21] Christopherson D G. The relaxation method in stress analysis[J]. British Journal of Applied Physics, 2002, 3(3): 65.
    [22] Cryer C W. The method of Christopherson for solving free boundary problems for infinite journal bearings by means of finite differences[J]. Mathematics of Computation, 1971, 25(115): 435-443.
    [23] Zheng Ligong, Li Longxiang, Wang Xiaokun, et al. Coordinate-origin calibration of removal function in Magnetorheological finishing[J]. Optics and Precision Engineering, 2017, 25(1): 8-14.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  837
  • HTML全文浏览量:  158
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-20
  • 修回日期:  2019-02-21
  • 刊出日期:  2019-07-15

目录

    /

    返回文章
    返回