留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

45 nm MOSFET毫米波小信号等效电路模型参数提取技术

李博 王军

李博, 王军. 45 nm MOSFET毫米波小信号等效电路模型参数提取技术[J]. 强激光与粒子束, 2019, 31: 024101. doi: 10.11884/HPLPB201931.180374
引用本文: 李博, 王军. 45 nm MOSFET毫米波小信号等效电路模型参数提取技术[J]. 强激光与粒子束, 2019, 31: 024101. doi: 10.11884/HPLPB201931.180374
Li Bo, Wang Jun. Parameter extraction technique of millimeter wave small-signal equivalent circuit model of 45 nm MOSFET[J]. High Power Laser and Particle Beams, 2019, 31: 024101. doi: 10.11884/HPLPB201931.180374
Citation: Li Bo, Wang Jun. Parameter extraction technique of millimeter wave small-signal equivalent circuit model of 45 nm MOSFET[J]. High Power Laser and Particle Beams, 2019, 31: 024101. doi: 10.11884/HPLPB201931.180374

45 nm MOSFET毫米波小信号等效电路模型参数提取技术

doi: 10.11884/HPLPB201931.180374
基金项目: 

国家自然科学基金项目 699010003

四川省教育厅资助科研项目 18ZA0502

详细信息
    作者简介:

    李博(1996—),男,硕士,主要研究方向为射频集成电路设计,纳米MOSFET建模;libo.601188849@qq.com

    通讯作者:

    王军(1970—),男,博士,教授,主要研究方向为硅基微纳器件的物理表征技术、射频集成电路设计、微弱随机信号处理;junwang@swust.edu.cn

  • 中图分类号: TN386.1

Parameter extraction technique of millimeter wave small-signal equivalent circuit model of 45 nm MOSFET

  • 摘要: 为了有效地表征45 nm MOSFET毫米波频段下的电学特性,研究了其高频等效电路的建模方法。基于45 nm MOSFET的器件物理结构及其导纳参数分析,通过综合考虑器件的本征物理特性、管脚及测试寄生特性,提出了一种准静态近似的高频等效电路模型及其参数直接提取的高精度简化算法,以此来统一表征模型参数从强反型区到弱反型区的偏置依赖性,并使之在不同偏置条件下的特性表征具有良好的连续性,以便于移植到商业仿真设计自动化工具中。通过ADS2013仿真工具的散射参数模拟结果与测量数据的一致性比较,验证了所建模型的实用性及其参数提取算法的准确性, 并表征了45 nm器件的偏置依赖性。
  • 图  1  NMOSFET等效电路参数的物理结构表征

    Figure  1.  Physical structure characterization of NMOSFET equivalent electrical parameters

    图  2  MOSFET的毫米波小信号等效电路

    Figure  2.  Millimeter wave small signal equivalent circuit of MOSFET

    图  3  衬底网络的高频等效电路和简化等效电路

    Figure  3.  High-frequency equivalent circuit and simplified equivalent circuit of substrate network

    图  4  参数提取流程图

    Figure  4.  Flow chart of parameter extraction

    图  5  散射参数测量系统

    Figure  5.  Scattering parameter measurement system

    图  6  寄生电容提取结果

    Figure  6.  Extracted results of parasitic capacitance

    图  7  寄生电感提取结果

    Figure  7.  Extracted results of parasitic inductance

    图  8  gmgds的提取结果

    Figure  8.  Extracted results of gm and gds

    图  9  Cgg, CgdRg的提取结果

    Figure  9.  Extracted results of Cgg, Cgd and Rg

    图  10  CmRd的提取结果

    Figure  10.  Extracted results of Cm and Rd

    图  11  RbCdb的提取结果

    Figure  11.  Extracted results of Rb and Cdb

    图  12  Rs的提取结果

    Figure  12.  Extracted results of Rs

    图  13  Cgs的提取结果

    Figure  13.  Extracted results of Cgs

    图  14  ADS2013工具中的仿真电路

    图  15  1~50 GHz测量与模拟的S参数比较

    Figure  15.  Comparison of measurement and simulation of S parameters from 1 to 50 GHz

    (the symbol shows measurement results, the curve shows simulation results)

    表  1  不同偏置下器件小信号等效电路参数的提取结果

    Table  1.   Extracted results of device small signal equivalent circuit parameters for different bias

    region Vgs /V Vds /V Cpg/fF Cpd/fF Cpgd/fF Lg/pH Ld/pH Ls/pH Rg Rs Rd
    weak inversion
    (0~0.22)V
    0.1 1.1 8 20 2.1 52.5 20 12 3.98 0.378 0.306
    0.2 1.1 8 20 2.1 52.5 20 12 3.98 0.378 0.306
    middle inversion
    (0.22~0.53)V
    0.3 1.1 8 20 2.1 52.5 20 12 3.98 0.378 0.306
    0.5 1.1 8 20 2.1 52.5 20 12 3.98 0.378 0.306
    strong inversion
    (0.53~1.2)V
    1.1 1.1 8 20 2.1 52.5 20 12 3.98 0.378 0.306
    region Vgs /V Vds /V Cdb/fF Rb Cgg/fF Cgs/fF gds/ms gm/ms Cm/fF Cgd/fF Cgb/fF
    weak inversion
    (0~0.22)V
    0.1 1.1 18.10 40.56 66.71 28.86 0.006 27 0.014 8 0.002 4 29.76 0.31
    0.2 1.1 18.86 31.29 69.19 37.31 1.628 0.580 95 2.01 29.76 0.56
    middle inversion
    (0.22~0.53)V
    0.3 1.1 20.83 18.11 79.36 47.70 5.86 5.0873 14.50 29.70 2.10
    0.5 1.1 21.33 6.30 83.33 56.50 12.30 38.685 7 25.00 29.64 2.89
    strong inversion
    (0.53~1.2)V
    1.1 1.1 21.33 1.06 94.24 62.68 19.90 110.648 32.30 31.00 4.11
    下载: 导出CSV
  • [1] Parvizi M, Allidina K, El-Gamal M N. A sub-mW, ultra-low-voltage, wideband low-noise amplifier design technique[J]. IEEE Trans Very Large Scale Integration Systems, 2015, 23(6): 1111-1122. doi: 10.1109/TVLSI.2014.2334642
    [2] Do A V, Boon C C, Do M A, et al. A subthreshold low-noise amplifier optimized for ultra-low-power applications in the ISM band[J]. IEEE Trans Microwave Theory & Techniques, 2008, 56(2): 286-292. https://dr.ntu.edu.sg/handle/10220/4678
    [3] 王军, 戴逸松. 低噪声前放中集成运放电路的En-In噪声性能分析[J]. 仪器仪表学报, 1998, 19(4): 352-357. doi: 10.3321/j.issn:0254-3087.1998.04.004

    Wang Jun, Dai Yisong. En-In noise performance analysis of integrated operational circuit in low-noise preamplifier. Chinese Journal of Scientific Instrument, 1998, 19(4): 352-357 doi: 10.3321/j.issn:0254-3087.1998.04.004
    [4] Lee C I. An improved cascade-based noise deembedding method for on-wafer noise parameters measurements[J]. IEEE Trans Electron Devices Letters, 2015, 36(4): 291-293. doi: 10.1109/LED.2015.2405915
    [5] Yeh K L. Narrow-width effect on high-frequency performance and RF noise of sub-40-nm multifinger nMOSFETs and pMOSFETs[J]. IEEE Transactions on Electron Devices, 2013, 60(1): 109-116. doi: 10.1109/TED.2012.2228196
    [6] 王军, 王林, 王丹丹. 40 nm金属氧化物半导体场效应晶体管感应栅极噪声及互相关噪声频率与偏置依赖性建模[J]. 物理学报, 2016, 65: 237102. doi: 10.7498/aps.65.237102

    Wang Jun, Wang Lin, Wang Dandan. Frequency and bias dependent modeling of induced gate noise and cross-correlation noise in 40 nm metal-oxide-semiconductor field-effect transistors. Acta Physica Sinica, 2016, 65: 237102 doi: 10.7498/aps.65.237102
    [7] Enz C C, Cheng Y. MOS transistor modeling for RF IC design[J]. IEEE Journal of Solid-State Circuits, 2000, 35(2): 186-201. doi: 10.1109/4.823444
    [8] Cheng Yuhua. MOSFET modeling for RF IC design[J]. IEEE Trans Electron Devices, 2005, 52(7): 1286-1303. doi: 10.1109/TED.2005.850656
    [9] Poulain L, Waldhoff N, Gloria D, et al. Small signal and HF noise performance of 45 nm CMOS technology in mmW range[C]//IEEE Radio Frequency Integrated Circuits Symposium. 2011: 1-4.
    [10] Enz C. An MOS transistor model for RF IC design valid in all regions of operation[J]. IEEE Trans Microwave Theory & Techniques, 2002, 50(1): 342-359. https://ieeexplore.ieee.org/document/981286
    [11] Chan L H K, Yeo K S, Chew K W J, et al. High-frequency noise modeling of MOSFETs for ultra low-voltage RF applications[J]. IEEE Trans Microwave Theory & Techniques, 2015, 63(1): 141-154. https://www.sciencedirect.com/science/article/pii/S0038110198001920
    [12] Chalkiadaki M A, Enz C C. RF small-signal and noise modeling including parameter extraction of nanoscale MOSFET from weak to strong inversion[J]. IEEE Trans Microwave Theory & Techniques, 2015, 63(7): 1-12. https://ieeexplore.ieee.org/document/7109953/
    [13] Enz C C, Vittoz E A. Charge-based MOS transistor modeling: The EKV model for low-power and RF IC design[M]. New York: John Wiley, 2006.
    [14] Issaoun A, Xiong Y Z, Shi J, et al. On the deembedding issue of CMOS multigigahertz measurements[J]. IEEE Trans Microwave Theory & Techniques, 2007, 55(9): 1813-1823.
    [15] Frickey D A. Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances[J]. IEEE Trans Microwave Theory & Techniques, 1994, 42(2): 205-211. https://ieeexplore.ieee.org/document/275248/
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  987
  • HTML全文浏览量:  224
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-20
  • 修回日期:  2019-01-24
  • 刊出日期:  2019-02-15

目录

    /

    返回文章
    返回