留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强反型区下纳米MOSFET的射频噪声机理分析

曾洪波 彭小梅 王军

曾洪波, 彭小梅, 王军. 强反型区下纳米MOSFET的射频噪声机理分析[J]. 强激光与粒子束, 2019, 31: 034101. doi: 10.11884/HPLPB201931.180375
引用本文: 曾洪波, 彭小梅, 王军. 强反型区下纳米MOSFET的射频噪声机理分析[J]. 强激光与粒子束, 2019, 31: 034101. doi: 10.11884/HPLPB201931.180375
Zeng Hongbo, Peng Xiaomei, Wang Jun. Analysis of RF noise mechanism in strong inversion region nanoscale MOSFET[J]. High Power Laser and Particle Beams, 2019, 31: 034101. doi: 10.11884/HPLPB201931.180375
Citation: Zeng Hongbo, Peng Xiaomei, Wang Jun. Analysis of RF noise mechanism in strong inversion region nanoscale MOSFET[J]. High Power Laser and Particle Beams, 2019, 31: 034101. doi: 10.11884/HPLPB201931.180375

强反型区下纳米MOSFET的射频噪声机理分析

doi: 10.11884/HPLPB201931.180375
基金项目: 

国家自然科学基金项目 699010003

四川省教育厅资助科研项目 18ZA0502

详细信息
    作者简介:

    曾洪波(1994-),女,硕士研究生,主要研究方向为射频集成电路设计,纳米MOSFET建模;421162653@qq.com

    通讯作者:

    王军(1970-),男,博士,教授,主要研究方向为硅基微纳器件的物理表征技术,射频集成电路设计,微弱随机信号处理;junwang@swust.edu.cn

  • 中图分类号: TN386.1

Analysis of RF noise mechanism in strong inversion region nanoscale MOSFET

  • 摘要: 为了有效地表征纳米MOSFET强反型区下的射频噪声特性,研究了其噪声建模的方法。在分析45 nm MOSFET射频小信号等效电路参数提取结果的基础上,建立了该器件漏极电流噪声的简洁模型。该模型完整地表征了决定45 nm器件噪声机理的三个组成部分:本征漏极电流噪声、栅极管脚寄生电阻热噪声和栅漏衬底寄生电磁耦合噪声。噪声测量在验证所建模型准确性和精度的同时,还表明:45 nm MOSFET的本征漏极电流噪声为受抑制的散粒噪声,并且随着栅源偏压的降低受抑制性逐渐减弱直至消失。
  • 图  1  晶体管的射频噪声测量系统

    Figure  1.  RF noise measurement system for transistors

    图  2  MOSFET的双端口等效噪声电流源模型

    Figure  2.  Equivalent noise current source model of MOSFET

    图  3  135 nm n-MOSFETs的SidIDS关系

    Figure  3.  Drain current noise Sidvs drain current IDS for 135 nm n-MOSFETs

    图  4  45 nm n-MOSFETs在VDS=1.1 V处的SidVGS关系

    Figure  4.  Sid vs grid voltage VGS for 45 nm n-MOSFETs at VDS=1.1 V

    图  5  45 nm n-MOSFET的噪声分析模型

    Figure  5.  Noise analysis model for 45 nm n-MOSFETs

    图  6  45 nm n-MOSFET在VGS=0.7 V处的SidIDS的关系

    Figure  6.  Sid vs IDS for 45 nm n-MOSFETs at VGS=0.7 V

    图  7  45 nm n-MOSFET在VGS=0.35 V处的SidIDS的关系

    Figure  7.  Sid vs IDS for 45 nm n-MOSFETs at VGS=0.35 V

    表  1  益于VDS=1.1 V时噪声分析的MOSFET小信号参数的提取结果

    Table  1.   Extracted results of small-signal parameters of MOSFET that can benefit the noise analysis at VDS=1.1 V

    VGS/V Cpg/fF Cpd/fF Cpgd/fF Lg/pH Ld/pH Ls/pH Rg Rs Rd Rb Cdb/fF Cgb/fF CGS/fF Cgd/fF Cds/fF gm/ms gds/ms
    PAD parasitic parameters substrate parasitic parameters intrinsic parameters
    0.35 8 20 2.1 52.5 20 12 3.98 0.378 0.306 17.6 19.61 2.39 47.18 29.81 4.96 5.65 7.28
    0.70 8 20 2.1 52.5 20 12 3.98 0.378 0.306 2.00 20.83 3.19 59.78 30.13 5.09 112.82 17.68
    下载: 导出CSV

    表  2  室温(300 K)下本征噪声分析中典型的噪声贡献

    Table  2.   Typical noise contribution for intrinsic noise analysis at room temperature (300 K)

    VGS/V $ \overline{i_{\text{n} R_{\text{g}}}^2} /\left(\text{A}^2 \cdot \text{Hz}^{-1}\right)$ $ \overline{i_{\text{n} b}^2} /\left(\text{A}^2 \cdot \text{Hz}^{-1}\right)$ $ \overline{i_{\text{n d}_{\max }}^2} /\left(\text{A}^2 \cdot \text{Hz}^{-1}\right) $ $ \overline{i_{\text{n d}_{\min }}^2} /\left(\text{A}^2 \cdot \text{Hz}^{-1}\right) $
    0.35 2.10×10-24 4.42×10-25 1.08×10-22 3.33×10-24
    0.70 8.39×10-22(max)1.82×10-22(min) 5.63×10-26 1.55×10-21 1.44×10-23
    下载: 导出CSV
  • [1] Navid R, Jungemann C, Lee T H, et al. High frequency noise in nanoscale MOSFETs[J]. J Appl Phys, 2007, 101: 124501. doi: 10.1063/1.2740345
    [2] Wang S C, Su P, Chen K M, et al. Comprehensive noise characterization and modeling for 65nm MOSFETs[J]. IEEE Trans Microw Theory Tech, 2010, 58(4): 740-746. doi: 10.1109/TMTT.2010.2041582
    [3] Antonopoulos A, Bucher M, Papathanasiou K, et al. CMOS small-signal and thermal noise modeling at high frequencies[J]. IEEE Trans Electron Devices, 2013, 60(11): 3727-3733.
    [4] Chan L H K, Yeo K S, Chew K W J, et al. High-frequency noise modeling of MOSFETs for ultra low-voltage RF applications[J]. IEEE Trans Microw Theory Techn, 2015, 63(1): 141-153. doi: 10.1109/TMTT.2014.2371827
    [5] Chalkiadaki M A, Enz C C. RF small-signal and noise modeling including parameter extraction of nanoscale MOSFETs from weak to strong inversion[J]. IEEE Trans Microw Theory Techn, 2015, 63(7): 2173-2184. doi: 10.1109/TMTT.2015.2429636
    [6] Ong S N, Yeo K S, Chew W J. Impact of velocity saturation and hot carrier effects on channel thermal noise model of deep sub-micron MOSFETs[J]. Solid-State Electronics, 2012, 72: 32-37.
    [7] Smit G D J, Scholten A J, Pijper R M T, et al. RF-noise modeling in advanced CMOS technologies[J]. IEEE Trans Electron Devices, 2014, 61(2): 245-254. doi: 10.1109/TED.2013.2282960
    [8] Jeon J, Lee J, Kim J, et al. The first observation of shot noise characteristic in 10-nm scale MOSFETs[C]//2009 Symposium on VLSI Technology. 2009: 48-49.
    [9] Mahajan V M, Patalay P R, Jindal R P, et al. A physical understanding of RF noise in bulk nMOSFETs with channel lengths in the nanometer regime[J]. IEEE Trans Electron Devices, 2012, 59(1): 197-205. doi: 10.1109/TED.2011.2173691
    [10] Andersson S, Svensson C. Direct experimental verification of shot noise in short channel MOS transistors[J]. Electron Lett, 2005, 41(15): 869-870. doi: 10.1049/el:20051474
    [11] Spathis C, Birbas A, Georgakopoulou K. Semi-classical noise investigation for sub-45nm metal-oxide-semiconductor field effect[J]. AIP Advances, 2015, 5: 087114. doi: 10.1063/1.4928424
    [12] Tsididis Y. Operation and modeling of the MOS transistor[M]. Boston, M A: WCB/McGraw-Hill, 1999: 66.
    [13] 李博, 王军. 45 nm MOSFET毫米波小信号等效电路模型参数提取技术[J]. 强激光与粒子束, 2019, 31: 024101. doi: 10.11884/HPLPB201931.180374

    Li Bo, Wang Jun. Parameter extraction technique of millimeter wave small-signal equivalent circuit model of 45 nm MOSFET. High Power Laser and Particle Beams, 2019, 31: 024101 doi: 10.11884/HPLPB201931.180374
    [14] Lee C I, Lin W C, Lin Y T. An improved cascade based noise de-embedding method for on-wafer noise parameter measurement[J]. IEEE Trans Electron Devices Lett, 2015, 36(4): 291-293. doi: 10.1109/LED.2015.2405915
    [15] Chan L H K, Yeo K S, Chew K W J, et al. MOSFET drain current noise modeling with effective gate overdrive and junction noise[J]. IEEE Trans Electron Device Lett, 2012, 33(8): 1117-1119. doi: 10.1109/LED.2012.2203781
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1199
  • HTML全文浏览量:  250
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-20
  • 修回日期:  2019-02-16
  • 刊出日期:  2019-03-15

目录

    /

    返回文章
    返回