Double peak phenomenon of applied pulse voltage induced by flashover around parallel-plate electrodes
-
摘要: 平板电容器是电磁脉冲(EMP)模拟装置中常用的脉冲压缩器件,在平行板电极的SF6沿面闪络实验中发现,原本前沿光滑的纳秒脉冲电压加载在平行板电极上,会在脉冲电压前沿上测得一尖峰,使加载的脉冲电压出现“双峰”现象。为探索该现象的原因,首先通过理论分析,认为该现象可能是由于平行板电极边缘发生了滑闪放电,增大了电极等效正对面积,使平行板电极的等效容值发生突变所致,容值变化越大,尖峰越明显。之后开展了不同气压下平行板电极的沿面闪络实验,并对放电过程的图像进行了拍摄,结果表明:平行板电极边缘产生的树枝状放电在低气压时主干明亮粗大,分枝较多,气压升高后,主干亮度和直径逐渐变小,分枝也越来越少;随着气压的增加,由于平行板电极边缘的滑闪放电受到抑制,平行板的等效面积变化率越来越小,尖峰出现时对应的电压幅值越来越高,且尖峰越来越不明显,与理论分析一致。Abstract: During the flashover experiments of parallel-plate electrodes in SF6, a double-peak phenomenon is discovered that a small peak occurs in the front-edge of the applied nanosecond pulse voltage which is originally smooth. In order to explore the cause of this phenomenon, the phenomenon is analyzed theoretically and ascribed to the discharge on the edge of the electrodes. The discharge enlarges the area of the parallel-plate electrodes, thus the equivalent capacitance of the electrodes is increased. The greater the change of the equivalent capacitance is, the more obvious the peak shows. Flashover experiments under different pressures are developed to validate the analysis. The results show that as the pressure increases, the peak is less and less obvious, and the amplitude of the small peak is higher and higher due to the suppression of the discharge in high pressure SF6, which is confirmed by the integrating images of the whole discharge process. Dendritic discharges occur on the edge of the electrodes during the flashover process. In low SF6 pressure, the stems are thick and bright, and generate many branches, but when the pressure is high, the number of stems and branches is reduced and the discharge channel also darkens.
-
Key words:
- flashover /
- nanosecond pulse /
- discharge channel /
- capacitance /
- parallel-plate electrodes /
-
-
[1] 邱爱慈. 脉冲功率技术应用[M]. 西安: 陕西科学技术出版社, 2016.Qiu Aici. Application of the pulse power technology. Xi'an: Shaanxi Science and Technology Press, 2016 [2] 毛从光, 程引会, 谢彦召. 高空电磁脉冲技术基础[M]. 北京: 科学出版社, 2018.Mao Congguang, Cheng Yinhui, Xie Yanzhao. Technological base of HEMP. Beijing: Science Press, 2018 [3] Baum C E. EMP simulators for various types of nuclear EMP environments: an interim categorization[J]. IEEE Trans Electromagnetic Compatibility, 1978, 20(1): 35-53. [4] Bailey V, Carboni V, Eichenberger C, et al. A 6-MV pulser to drive horizontally polarized EMP simulators[J]. IEEE Trans Plasma Science, 2010, 38(10): 2554-2558. doi: 10.1109/TPS.2010.2065245 [5] Charles G, Lam S K, Naff J T, et al. Design and performance of the FEMP-2000: A fast risetime, 2 MV EMP pulser[C]//The 12th IEEE International Pulsed Power Conference. 1999: 1437-1440. [6] Schilling H, Schluter J, Peters M, et al. High voltage generator with fast risetime for EMP simulation[C]//The 10th IEEE International Pulsed Power Conference. 1995: 1359-1364. [7] Jung M, Weise T, Nitsch D, et al. Upgrade of a 350 kV NEMP HPD pulser to 1.2 MV[C]//26th International Power Modulator Symposium. 2004: 23-26. [8] 陈维青, 何小平, 贾伟, 等. 2.5 MV快沿电磁脉冲模拟器脉冲功率源的研制[C]//第十四届全国核电子学与核探测技术学术年会. 北京: 中国电子学会核电子学与核探测技术分会, 2008: 689-693.Chen Weiqing, He Xiaoping, Jia Wei, et al. Development of a 2.5MV fast pulse generator for EMP simulation//14th National Conference on Nuclear Electronics & Detection Technology. Beijing: Nuclear Electronics and Detection Technology Branch, Chinese Institute of Electronics, 2008: 689-693 [9] Giri D V, Baum C E. Theoretical considerations for optimal positioning of peaker capacitor arms about a Marx generator parallel to a ground plane[J]. IEEE Trans Electromagnetic Compatibility, 1989, 32(2): 117-124. [10] Jia W, Chen Z Q, Tang J, et al. A 800 kV compact peaking capacitor for nanosecond generator[J]. Review of Scientific Instruments, 2014, 85: 094706. doi: 10.1063/1.4895158 [11] 陈永真, 李锦. 电容器手册[M]. 北京: 科学出版社, 2011.Chen Yongzhen, Li Jin. Handbook of capacitors. Beijing: Science Press, 2011 [12] 贾伟, 陈志强, 郭帆, 等. 基于Marx发生器的中小型电磁脉冲模拟器驱动源[J]. 强激光与粒子束, 2018, 30: 073203. doi: 10.11884/HPLPB201830.170401Jia Wei, Chen Zhiqiang, Guo Fan, et al. Drivers of small and medium scale electromagnetic pulse simulator based on Marx generator. High Power Laser and Particle Beams, 2018, 30: 073203 doi: 10.11884/HPLPB201830.170401 [13] 刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005.Liu Xisan. High power impulse technique. Beijing: National Defense Industry Press, 2005 期刊类型引用(17)
1. 张建磊,张友为,华丹琪,窦雨昂,党鹏涛. 动态水下环境无线光通信自适应合并接收技术. 光学学报. 2025(02): 169-179 . 百度学术
2. 高晓梅,舒玉婷,梁静远,王慧琴,赵黎,宋鹏,柯熙政. 通信激光器及其调制技术研究进展. 光通信研究. 2024(02): 92-103 . 百度学术
3. 柯程虎,陈明惠,梁静远,赵黎,王惠琴,王怡,柯熙政. OWC/RF混合通信系统研究进展. 应用光学. 2024(02): 237-248 . 百度学术
4. 李征,韩旭,柯熙政. 无线光通信一对多发射天线研究进展. 激光杂志. 2024(04): 1-15 . 百度学术
5. 冯灵霞,张亚娟,刘寒冰. 云计算智能嵌入式技术下光通信网络路由的研究. 激光杂志. 2024(06): 185-189 . 百度学术
6. 梁静远,庞明志,柯熙政. 无线光通信中大气湍流抑制方法. 电子测量与仪器学报. 2024(11): 1-14 . 百度学术
7. 陈铭杰,毕凯峰,黄潜. 基于光纤供能的双网融合通信恶意数据识别系统. 激光杂志. 2023(03): 170-174 . 百度学术
8. 梁静远,王醒醒,李征,张晓丹,宋鹏,赵黎,柯熙政. 水下无线光通信中关键技术的研究与进展. 数字海洋与水下攻防. 2023(02): 215-240 . 百度学术
9. 胡恢军,周菁菁,邓锋. 无线光通信系统多路信号串扰自适应抑制方法. 激光杂志. 2023(06): 177-181 . 百度学术
10. 杨尚君,梁静远,吴加丽,柯熙政. 逆向传输标定法校正自适应光学非共光路像差. 光学学报. 2023(12): 102-112 . 百度学术
11. 梁静远,林水清,韩美苗,宋鹏,赵黎,柯熙政. 自适应光学中的模式法. 现代应用物理. 2023(02): 21-36 . 百度学术
12. 柯熙政,梁静远,许东升,王佳帆. 无线光通信类脉冲位置调制技术研究进展. 光电工程. 2022(03): 3-21 . 百度学术
13. 张建磊,和晗昱,聂欢,邱晓芬,李佳琪,杨祎,贺锋涛. 各向异性海洋湍流DHPIM无线光通信性能分析. 光子学报. 2022(04): 87-99 . 百度学术
14. 梁静远,亢维龙,董壮,柯熙政,董可. 自由空间光通信系统光学天线技术研究进展. 光通信技术. 2022(04): 1-10 . 百度学术
15. 高晓梅,邢甜,高婉倩,董可,柯熙政. 无线光相干通信及其实验研究. 光通信技术. 2022(04): 37-45 . 百度学术
16. 梁静远,李梦茹,王佳帆,柯熙政. 无线光通信系统纠错编码研究进展. 物联网学报. 2022(03): 23-36 . 百度学术
17. 杨佳辉,张艳,肖晗,张子睿,顾子健,张云哲. 涡旋光干涉衍射综合试验仪的设计与制造. 大学物理实验. 2022(03): 90-93 . 百度学术
其他类型引用(28)
-