Equivalent parameters prediction of dielectric barrier discharge piecewise model with parallel ceramic rods
-
摘要: 为实现对介质阻挡放电负载模型等效参数的有效预测,引入放电区域面积作为中间变量。以平行陶瓷棒为负载,通过Maxwell有限元仿真得到恒压静电场下的负载等效电容与放电区域的对应关系。结合恒压静电场下的电场分布,提出了放电区域逐步扩张下的气隙首次击穿电压、负载外加电压峰值及气隙放电维持电压的预估方法。进而,根据李萨如图形法求得各个工作点的功率。至此,建立起了放电区域同各个等效参数间的量化关系,并实现了对参数的预测。最后,对气隙间距为1,3,4 mm的工况进行了实验验证。实验结果表明:气隙放电维持电压预测值在局部变化趋势上与实测值存在一定差异;放电功率、负载外加电压峰值预测结果与实测值较为吻合。Abstract: In order to achieve effective prediction of the equivalent parameters of dielectric barrier discharge piecewise model, discharge region is introduced as an intermediate variable in the proposed method. In this study, taking parallel ceramic rods as the reactor, the corresponding relationships between the equivalent capacitances of the reactor and the discharge region are obtained by Maxwell finite element simulation under constant voltage electrostatic field. With the help of electric field distribution, the estimation theories of how the critical parameters change over the gradual expansion process of the discharge region are explained, including the air gap first breakdown voltage, the peak value of the applied voltage and the air gap discharge maintaining voltage. Afterwards, the discharge power under various operating conditions can be calculated by Lissajous's figure method. Thus the quantitative relationship between the discharge region and each equivalent parameter is established, and the prediction is realized. An experiment for verification was performed with air gap distances of 1 mm, 3 mm, and 4 mm. It is shown that the predicted and the experimental curves of discharge maintaining voltage have some difference in the local variation trend, while the discharge power and the applied voltage peak prediction results are in good agreement with the measured ones.
-
表 1 不放电阶段不同气隙间距下的的等效电容参数
Table 1. Equivalent capacitances during non-discharge stage with different air gap distances
d/mm Cd-ch/pF Cg-ch/pF Cch/pF Cch-exp/pF 1 120.06 53.79 37.15 36.27 3 142.14 24.47 20.87 23.02 4 148.43 20.30 17.86 21.62 -
[1] 宋颖. 大气压非平衡等离子体在杀菌中的应用研究[D]. 大连: 大连理工大学, 2014.Song Ying. Inactivation applications of atmospheric pressure nonequilibrium plasmas. Dalian: Dalian University of Technology, 2014 [2] Kogelschatz U. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications[J]. Plasma Chemistry and Plasma Processing, 2003, 23(1): 1-46. doi: 10.1023/A:1022470901385 [3] 胡小吐. AC/DC流光放电等离子体烟气脱硫实验研究[D]. 北京: 北京交通大学, 2007.Hu Xiaotu. Experimental research of AC/DC streamer plasmas in flue gas desulfurization. Beijing: Beijing Jiaotong University, 2007 [4] Lieberman M A, Lichtenberg A J. Principles of plasma discharges and materials processing[M]. Hoboken: John Wiley & Sons, 2005. [5] 郝世强. 介质阻挡放电的能量压缩机理、实现及优化[D]. 杭州: 浙江大学, 2016.Hao Shiqiang. Mechanism, implementation and optimization of dielectric barrier discharge energy compression. Hangzhou: Zhejiang University, 2016 [6] Kinnares V, Hothongkham P. Circuit analysis and modeling of a phase-shifted pulsewidth modulation full-bridge-inverter-fed ozone generator with constant applied electrode voltage[J]. IEEE Transactions on Power Electronics, 2010, 25(7): 1739-1752. doi: 10.1109/TPEL.2010.2042075 [7] Eid A, Takashima K, Mizuno A. Experimental and simulation investigations of DBD plasma reactor at normal environmental conditions[J]. IEEE Transactions on Industry Applications, 2014, 50(6): 4221-4227. doi: 10.1109/TIA.2014.2315496 [8] Guo Tangtang, Liu Xingliang, Hao Shiqiang, et al. Prediction of equivalent electrical parameters of dielectric barrier discharge load using a neural network[J]. Plasma Science and Technology, 2015, 17(3): 196-201. doi: 10.1088/1009-0630/17/3/05 [9] Alonso J M, Valdés M, Calleja A J, et al. High frequency testing and modeling of silent discharge ozone generators[J]. Ozone Science & Engineering, 2003, 25(5): 363-376. [10] 王静, 蔡忆昔, 王军, 等. 介质阻挡放电等效电容的测量与分析[J]. 高电压技术, 2008, 34(2): 264-266, 308. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200802013.htmWang Jing, Cai Yixi, Wang Jun, et al. Measurement and analysis of equivalent capacitance in dielectric barrier discharge. High Voltage Engineering, 2008, 34(2): 264-266, 308 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200802013.htm [11] 王辉, 方志, 邱毓昌, 等. 介质阻挡放电等效电容变化规律的研究[J]. 绝缘材料, 2005, 38(1): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JYCT200501012.htmWang Hui, Fang Zhi, Qiu Yuchang, et al. On the changing of equivalent capacitance in dielectric barrier discharge. Insulating Materials, 2005, 38(1): 37-40 https://www.cnki.com.cn/Article/CJFDTOTAL-JYCT200501012.htm [12] Xiao Dengming. Gas discharge and gas insulation[M]. Heidelberg: Springer-Verlag, 2016. [13] 张红. 高电压技术[M]. 北京: 中国电力出版社, 2009.Zhang Hong. High voltage technique. Beijing: China Electric Power Press, 2009