Hybrid control method to suppress neutral-point voltage fluctuation for three-phase three-level VIENNA rectifier
-
摘要: 针对三相三电平VIENNA整流器中点电位波动问题,建立了中点电流的数学模型,分析了中点波动形式、并结合中点电流数学模型分析了中点电位波动的根本原因,针对传统固定调节因子法抑制中点电位波动效果较差的缺点,提出了一种结合动态调节因子与电容偏差调节的混合抑制方法,给出了6扇区下偏差调节量和动态调节因子表达式,然后通过查表法将6扇区对应动态调节量注入到调制波中,实现了中点电位尤其三次基频波动的自动抑制,进一步修正后的混合抑制法还可有效抑制电容参数和负载不对称导致的中点大幅度波动,实验结果验证了策略的可行性和有效性。
-
关键词:
- 三相三电平VIENNA整流器 /
- 中点电位波动 /
- 混合抑制方法 /
- 动态调节因子
Abstract: Aiming at the problem of the third fundamental frequency fluctuation of the midpoint potential of VIENNA rectifier, the mathematical model of the midpoint current is established. The midpoint fluctuation form is analyzed, and the mathematical reason of midpoint fluctuation is pointed out by analysing the midpoint current mathematical model. To overcome the limitation of the traditional fixed adjustment factor control method to suppress neutral-point voltage fluctuation, a hybrid suppression method combining dynamic adjustment factor and capacitance deviation adjustment is proposed. This method realizes the automatic suppression of the midpoint potential fluctuation through looking for the tables for the deviation adjustment and the dynamic adjustment factor expression within the six sectors which is injected into the three-phase modulation waves, and further modified hybrid suppression method can effectively suppress the large fluctuation hybrid of the midpoint caused by asymmetry of the capacitance parameter and the unbalanced load. The experimental results verify the feasibility and validity of the strategy. -
表 1 各扇区内中点电流及其对中点电位的影响
Table 1. Neutral point current expressions in each sector and its effects on neutral point
sector No. neutral point current expression capacitor voltage 1 io=-2kumbumc < 0 C1↑ C2↓,C1>C2 2 io=-2kumbuma < 0 C1↓ C2↑,C1 < C2 3 io=-2kumaumc < 0 C1↑ C2↓,C1>C2 4 io=-2kumbumc < 0 C1↓ C2↑,C1 < C2 5 io=-2kumbuma < 0 C1↑ C2↓,C1>C2 6 io=-2kumaumc < 0 C1↓ C2↑,C1 < C2 表 2 各扇区内调节因子和调节量表达式
Table 2. Regulation factor expression in each sector
sector No. neutral-point voltage adjustment factor md neutral-point deviation adjustment umd influence on neutral-point current influence on the neutral-point voltage fluctuation 1,4 $-\frac{u_{\mathrm{mb}} u_{\mathrm{mc}}}{u_{\mathrm{ma}} \mathit{\Delta}_{\mathrm{uc}}} $ $-\frac{u_{\mathrm{mb}} u_{\mathrm{mc}}}{u_{\mathrm{ma}}} $ reduced reduced 2,5 $-\frac{u_{\mathrm{mb}} u_{\mathrm{ma}}}{u_{\mathrm{mc}} \mathit{\Delta}_{\mathrm{uc}}} $ $ -\frac{u_{\mathrm{mb}} u_{\mathrm{ma}}}{u_{\mathrm{mc}}}$ reduced reduced 3,6 $ -\frac{u_{\mathrm{ma}} u_{\mathrm{mc}}}{u_{\mathrm{mb}} \mathit{\Delta}_{\mathrm{uc}}}$ $ -\frac{u_{\mathrm{ma}} u_{\mathrm{mc}}}{u_{\mathrm{mb}}}$ reduced reduced 表 3 中点电位动态调节因子和调节量表达式
Table 3. Neutral voltage dynamic regulation quantity expression
sector No. dynamic adjustment factor k2 dynamic adjustment um 1,4 $1-\frac{u_{\mathrm{mb}} u_{\mathrm{mc}}}{u_{\mathrm{ma}} \mathit{\Delta}_{\mathrm{uc}}} $ $ \mathit{\Delta}_{\mathrm{uc}}-\frac{u_{\mathrm{mb}} u_{\mathrm{m} \mathrm{c}}}{u_{\mathrm{ma}}}$ 2,5 $1-\frac{u_{\mathrm{mb}} u_{\mathrm{ma}}}{u_{\mathrm{mc}} \mathit{\Delta}_{\mathrm{uc}}} $ $\mathit{\Delta}_{\mathrm{uc}}-\frac{u_{\mathrm{mb}} u_{\mathrm{ma}}}{u_{\mathrm{mc}}} $ 3,6 $1-\frac{u_{\mathrm{mc}} u_{\text {ma }}}{u_{\mathrm{mb}} \mathit{\Delta}_{\mathrm{uc}}} $ $\mathit{\Delta}_{\mathrm{uc}}-\frac{u_{\mathrm{mc}} u_{\mathrm{ma}}}{u_{\mathrm{mb}}} $ 表 4 系统实验参数
Table 4. Parameters for system experiment
grid side line to line voltage/V DC side voltage/V load /Ω switching frequency /kHz filter inductor / H filter capacitor /μF 100 200 180~120 5 5 1600 -
[1] Kolar J W, Zach F C. A novel three-phase three-switch three-level PWM rectifier[C]//IEEE 1994 International Conference on Power Conversion. 1994: 125-138 [2] 申兴, 王久和. 分段式三电平Vienna整流器中性点电位平衡控制策略研究[J]. 电气工程学报, 2016, 11(10): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DQZH201610006.htmShen Xing, Wang Jiuhe. A study on the balance control strategy of neutral point potential in the third level of Vienna rectifier. Journal of Electrical Engineering, 2016, 11(10): 31-36 https://www.cnki.com.cn/Article/CJFDTOTAL-DQZH201610006.htm [3] Lee J S, Lee K B. Performance analysis of carrier-based discontinuous PWM method for Vienna rectifiers with neutral-point voltage balance[J]. IEEE Trans Power Electronics, 2016: 4075-4084. [4] Adhikari J, Prasanna I V, Panda S K. Reduction of input current harmonic distortions and balancing of output voltages of the vienna rectifier under supply voltage disturbances[J]. IEEE Trans Power Electronics, 2017, 32(7): 5802-5812. doi: 10.1109/TPEL.2016.2611059 [5] 桂石翁, 吴芳, 万山明, 等. 变虚拟空间矢量的三电平NPC变换器中点电位平衡控制策略[J]. 中国电机工程学报, 2015, 35(19): 5013-5021. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201519021.htmGui Shiweng, Wu Fang, Wan Shanming, et al. Control strategy of the neutral voltage balance control in the three-level NPC converter of virtual space vector. Proceedings of the CSEE, 2015, 35(19): 5013-5021 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201519021.htm [6] 谢路耀, 金新民, 吴学智, 等. 基于零序电压注入与调制波分解的三电平脉宽调制策略[J]. 电工技术学报, 2014, 29(10): 27-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201410004.htmXie luyao, Jin Xinmin, Wu Xuezhi, et al. Three levels of pulse width modulation strategy based on zero-sequence voltage injection and modulation wave decomposition [J]. Journal of Electrical Technology, 2014, 29(10): 27-37 https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201410004.htm [7] 王小峰, 邓焰, 何湘宁. 三相三电平二极管箝位型整流器的单载波调制和中点平衡控制策略[J]. 中国电机工程学报, 2006, 26(8): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200608001.htmWang Xiaofeng, Deng Yan, He Xiangning. Single-carrier modulation and midpoint balancing method for simplified three-phase three-level diode-clamped rectifier. Proceedings of the CSEE, 2006, 26(8): 7-11 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200608001.htm [8] 王正, 谭国俊, 曾维俊, 等. 基于SVPWM的VIENNA整流器研究[J]. 电气传动, 2011, 41(4): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DQCZ201104008.htmWang Zheng, Tan Guojun, Zeng Weijun, et al. Research on VIENNA rectifier based on SVPWM. Electric Drive, 2011, 41(4): 31-34 https://www.cnki.com.cn/Article/CJFDTOTAL-DQCZ201104008.htm [9] 王正, 谭国俊, 曾维俊, 等. 基于SVPWM的VIENNA整流器研究[J]. 电气传动, 2011, 41(4): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DQCZ201104008.htmWang Zheng, Tan Guojun, Zeng Weijun, et al. Research on VIENNA rectifier based on SVPWM. Electric Drive, 2011, 41(4): 31-34 https://www.cnki.com.cn/Article/CJFDTOTAL-DQCZ201104008.htm [10] 王新宇, 何英杰, 刘进军. 注入零序分量SPWM调制三电平逆变器直流侧中点电压平衡控制机理[J]. 电工技术学报, 2011, 26(5): 70-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201105012.htmWang Xinyu, He Yingjie, Liu Jinjun. Injection zero sequence component SPWM modulation three-level inverter DC side midpoint voltage balance control mechanism. Transactions of China Electrotechnical Society, 2011, 26(5): 70-77 https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201105012.htm [11] 宋卫章, 黄骏, 钟彦儒, 等. 带中点电位平衡的Vienna整流器滞环电流控制方法[J]. 电网技术, 2013, 37(7): 1909-1914 https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201307019.htmSong Weizhang, Huang Jun, Zhong Yanru, et al. Hysteresis current control method of Vienna rectifier with neutral-point potential balance. Power System Technology, 2013, 37(7): 1909-1914 https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201307019.htm