留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同燃料循环方案的可持续性与经济性分析

丁文杰 黄欢 戴涛 郭海兵

丁文杰, 黄欢, 戴涛, 等. 不同燃料循环方案的可持续性与经济性分析[J]. 强激光与粒子束, 2019, 31: 056007. doi: 10.11884/HPLPB201931.190013
引用本文: 丁文杰, 黄欢, 戴涛, 等. 不同燃料循环方案的可持续性与经济性分析[J]. 强激光与粒子束, 2019, 31: 056007. doi: 10.11884/HPLPB201931.190013
Ding Wenjie, Huang Huan, Dai Tao, et al. Sustainability and economy analysis of different fuel cycle options[J]. High Power Laser and Particle Beams, 2019, 31: 056007. doi: 10.11884/HPLPB201931.190013
Citation: Ding Wenjie, Huang Huan, Dai Tao, et al. Sustainability and economy analysis of different fuel cycle options[J]. High Power Laser and Particle Beams, 2019, 31: 056007. doi: 10.11884/HPLPB201931.190013

不同燃料循环方案的可持续性与经济性分析

doi: 10.11884/HPLPB201931.190013
基金项目: 

国家自然科学基金项目 L172400024

详细信息
    作者简介:

    丁文杰(1990-),男,硕士,助理研究员,主要从事反应堆热工水力研究; dwjcaep@163.com

  • 中图分类号: TL249

Sustainability and economy analysis of different fuel cycle options

  • 摘要: 基于核燃料循环政策技术的成熟度,选取了一次通过循环方案(OTC)、单次复用循环方案(TTC)、快堆闭式循环方案(FRC)及混合堆闭式循环方案(HRC)四种典型的核燃料循环方案进行分析。采用平衡物质流模型对不同燃料循环方案的可持续性进行研究,基于平准化电力成本计算方法对不同方案的燃料成本和乏燃料处置成本进行分析。研究结果表明:闭式燃料循环可极大减少核废料产生; 燃料可自持的FRC方案及HRC方案可使用贫铀做燃料而不消耗天然铀; 仅考虑燃料成本和乏燃料处置成本时,HRC方案的经济性最高而TTC方案的经济性最差。
  • 图  1  OTC方案物质流计算示意图

    Figure  1.  Schematic diagram of mass flow calculation in the OTC option

    图  2  天然铀需求量与贫铀产生量

    Figure  2.  Natural uranium demand and depleted uranium production

    图  3  核废物产生量

    Figure  3.  Production of nuclear waste

    图  4  不同循环方案的平准化电力成本

    Figure  4.  Levelized cost of electricity in different cycle options

    表  1  轻水反应堆装料质量流

    Table  1.   Light water reactor loading mass flow

    nuclide mass flow/(MTHM·GWe-1·a-1)
    PWR UO2 PWR MOX/UO2
    load after cooling load after cooling
    MOX UO2 MOX UO2
    HM 19.5 18.494 5.719 13.667 5.425 12.964
    U(235U) 19.500(0.825) 18.244(0.150) 5.22 13.667 5.041 12.788
    Pu 0 0.225 0.491 0 0.343 0.157
    MA 0 0.025 0.008 0 0.04 0.02
    TRU 0 0.25 0.499 0 0.383 0.177
    FP 0 1.006 0 0 0.293 0.703
    下载: 导出CSV

    表  2  快堆装料质量流

    Table  2.   Fast reactor loading mass flow

    nuclide mass flow/(MTHM·GWe-1·a-1)
    fast breeder reactor fast burner reactor
    CR=1.23 CR=0 CR=0.5 CR=0.75 CR=1
    load after cooling load after cooling load after cooling load after cooling load after cooling
    HM 14.84 14.01 2.78 1.906 6.194 5.324 8.203 7.327 11.19 10.34
    TRU 1.287 1.507 2.741 1.866 2.064 1.667 1.74 1.575 1.552 1.571
    U 13.52 12.47 0.039 0.04 4.13 3.647 6.463 5.752 9.64 8.763
    FP 0 0.831 0 0.874 0 0.87 0 0.876 0 0.857
    Pu 1.287 1.507 - - - - - - - -
    下载: 导出CSV

    表  3  前端燃料单元的价格

    Table  3.   Price of units of front-end fuel

    unit reference value/($·kgHM-1)
    natural uranium 100
    depleted uranium 10
    conversion 10a
    concentration 140b
    UOX fabrication 258c
    MOX fabrication 2 400
    fabrication of fast reactor fuel 2 400
    fabrication of hybrid reactor fuel 30d
    Notes:
    a:The conversion price of recycled uranium is about 300% of that of the natural uranium;
    b:The enrichment price of recycled uranium is about 110% of that of the natural uranium;
    c:The manufacturing price of REPUOX fuel is about 107% of that of the natural uranium;
    d:The fuel for the hybrid reactor is a plate structure and requires no fine processing, so the manufacturing cost is low, but there was no mature technology. Referring to the conversion process of recycled uranium, the manufacturing cost of the hybrid reactor fuel was set to 30 $·kgHM-1.
    下载: 导出CSV

    表  4  燃料处置单元的价格

    Table  4.   Price of units of fuel disposal

    unit reference value/($·kgHM-1)
    UOX temporary storage 200
    MOX temporary storage 200
    UOX spent fuel disposal 412
    MOX spent fuel disposal 3 130
    UOX HLW 190
    fast reactor HLW 280
    UOX reprocess 1 600
    fast reactor fuel reprocess 3 200
    simple dry processing 120a
    Notes:
    a:The cost of fuel temporary cooling and storage was included in the cost of fuel reprocessing. The hybrid reactor fuel was reprocessed every five years by the simple dry process, to remove the fission products of spent fuel using the decay heat. The process was simple and required little cost, but there was no mature technology. Referring to the price of dry storage in EPRI, the price of simple dry process was set to 120 $·kgHM-1
    下载: 导出CSV
  • [1] 张小锋, 张斌. 我国中长期能源碳排放情景展望[J]. 中国能源, 2016, 38(2): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGLN201602012.htm

    Zhang Xiaofeng, Zhang Bin. China's long-term energy carbon emission outlook. Energy of China, 2016, 38(2): 38-42 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGLN201602012.htm
    [2] Deutch J, Driscoll M, Gray P E, et al. The future of nuclear power: An interdisciplinary MIT study[R]. 0-615-12420-8, 2003.
    [3] Bunn M, Holdren J P, Fetter S, et al. The economics of reprocessing versus direct disposal of spent nuclear fuel[J]. Nuclear Technology, 2005, 150(3): 209-230. doi: 10.13182/NT05-A3618
    [4] Suzuki T. The fast reactor and its fuel cycle developments in Japan: Can Japan unlock its development path?[J]. Science and Global Security, 2009, 17(1): 68-76. doi: 10.1080/08929880902953039
    [5] OECD/NEA. The economics of the nuclear fuel cycle[R]. 1990066X, 1994.
    [6] 徐銤. 快堆和我国核能的可持续发展[J]. 现代电力, 2006, 2(5): 106-110. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDL200605012.htm

    Xu Mi. The sustainable development of fast reactor and nuclear energy in China. Modern Electric Power, 2006, 2(5): 106-110 https://www.cnki.com.cn/Article/CJFDTOTAL-XDDL200605012.htm
    [7] 张建平, 王琳. 我国两种核燃料循环方案的经济分析与评价[J]. 中外能源, 2015, 20(6): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201506006.htm

    Zhang Jianping, Wang lin. Economic analysis and evaluation of two nuclear fuel cycle options in China. Sino-Global Energy, 2015, 20(6): 35-41 https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201506006.htm
    [8] 刘国明, 邵增. 混合能源堆裂变包层核燃料成本分析[J]. 核科学与工程, 2017, 37(1): 154-160. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXY201701025.htm

    Liu Guoming, Shao Zeng. Fuel cost analysis for fission layer of fusion-fission hybrid reactor for energy. Nuclear Science and Engineering, 2017, 37(1): 154-160 https://www.cnki.com.cn/Article/CJFDTOTAL-HKXY201701025.htm
    [9] 丁晓明. 从不同燃料循环模式分析快堆燃料循环的经济性[J]. 中国核电, 2014, 7(2): 160-167. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHD201402018.htm

    Ding Xiaoming. Economic analysis of fast reactor fuel cycle with different modes. China Nuclear Power, 2014, 7(2): 160-167 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHD201402018.htm
    [10] 彭先觉, 王真. Z箍缩驱动聚变-裂变混合能源堆总体概念研究[J]. 强激光与粒子束, 2014, 26: 090201. doi: 10.11884/HPLPB201426.090201

    Peng Xianjue, Wang Zhen. Conceptual research on Z-pinch driven fusion-fission hybrid reactor. High Power Laser and Particle Beams, 2014, 26: 090201 doi: 10.11884/HPLPB201426.090201
    [11] 师学明. 聚变裂变混合能源堆包层中子学概念研究[D]. 绵阳: 中国工程物理研究院, 2010.

    Shi Xueming. Study on the neutrons concept of the fusion-fission hybrid reactor blanket. Mianyang: China Academy of Engineering Physics, 2010
    [12] De Roo G. Economics of nuclear fuel cycles : Option valuation and neutronics simulation of mixed oxide fuels[R]. MIT-635981218, 2009.
    [13] Hoffman E A, Hill R N, Taiwo T A. Advanced LWR multi-recycle concepts[J]. Transactions of the American Nuclear Society, 2005, 93(13): 363-364.
    [14] Quinn J E, Magee P M, Thompson M L, et al. ALMR fuel cycle flexibility[C]//Proceedings of the American Power Conference. 1993, 55(2): 1079-1084.
    [15] Hoffman E A, Yang W S, Hill R N. Preliminary core design studies for the advanced burner reactor over a wide range of conversion ratios[R]. ANL-AFCI-177, 2008.
    [16] MIT. The future of the nuclear fuel cycle[R]. 978-0-9828008-4-3, 2011.
    [17] Hamel J. An economic analysis of select fuel cycles using the steady-state analysis model for advanced fuel cycles schemes (SMAFS)[R]. EPRI-1015387, 2007.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  1516
  • HTML全文浏览量:  314
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-15
  • 修回日期:  2019-02-24
  • 刊出日期:  2019-05-15

目录

    /

    返回文章
    返回