留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

驱动激光对砷化镓阴极材料的损伤阈值

童靖垒 赵苏宇 潘清 肖德鑫 吴岱 黎明

童靖垒, 赵苏宇, 潘清, 等. 驱动激光对砷化镓阴极材料的损伤阈值[J]. 强激光与粒子束, 2019, 31: 115103. doi: 10.11884/HPLPB201931.190014
引用本文: 童靖垒, 赵苏宇, 潘清, 等. 驱动激光对砷化镓阴极材料的损伤阈值[J]. 强激光与粒子束, 2019, 31: 115103. doi: 10.11884/HPLPB201931.190014
Tong Jinglei, Zhao Suyu, Pan Qing, et al. Damage threshold of GaAs cathode material by driving laser[J]. High Power Laser and Particle Beams, 2019, 31: 115103. doi: 10.11884/HPLPB201931.190014
Citation: Tong Jinglei, Zhao Suyu, Pan Qing, et al. Damage threshold of GaAs cathode material by driving laser[J]. High Power Laser and Particle Beams, 2019, 31: 115103. doi: 10.11884/HPLPB201931.190014

驱动激光对砷化镓阴极材料的损伤阈值

doi: 10.11884/HPLPB201931.190014
基金项目: 

国家重点研发计划项目 2016YFA0401904

详细信息
    作者简介:

    童靖垒(1995—), 男,硕士研究生,主要从事半导体光阴极方面的研究; 18328582495@163.com

    通讯作者:

    潘清(1968—),女,高级工程师,主要从事加速器光阴极电子源的研究; panqing_pq@126.com

  • 中图分类号: TL53

Damage threshold of GaAs cathode material by driving laser

  • 摘要: 砷化镓作为优秀的光电发射材料,被广泛应用于制备阴极材料。砷化镓通常用到的驱动激光是532 nm连续波激光,在相同平均功率的情况下比纳秒脉冲激光的峰值功率低很多,因此在有某些超大电荷量的需求时,就不能避免使用高峰值功率激光照射。所以在砷化镓阴极的使用过程中,需要对其损伤阈值进行测量。基于上述背景,首先通过数值计算得到砷化镓材料的激光损伤阈值,再通过软件模拟加以验证,最后结合实验分析比较其差异。其中数值计算结果为17.811 MW/cm2,模拟结果为19 MW/cm2,而实验结果为13.5 MW/cm2。经过合理的分析,认为砷化镓在作为光阴极材料时的损伤阈值会进一步降低。
  • 图  1  (a) 在脉冲激光作用时间内不同激光功率密度导致材料表面的温度变化; (b)瞬态最高温度与激光功率密度的关系

    Figure  1.  (a) Temperature variation of material surface caused by different laser power density during pulsed laser irradiation; (b) Relation between transient maximum temperature and laser power density

    图  2  最大拉伸应力与温度的关系图

    Figure  2.  Relation diagram of maximum tensile stress and temperature

    图  3  (a) 损伤面积图; (b) 激光功率与损伤面积的关系图

    Figure  3.  (a) Damagearea map; (b) Relation diagram oflaser powerand damagearea

  • [1] 孙承纬, 陆启生, 范正修, 等. 激光辐照效应[M]. 北京: 国防工业出版社, 2002.

    Sun Chengwei, Lu Qisheng, Fan Zhengxiu, et al. Effect of laser irradiation. Beijing: National Defend Industry Press, 2002
    [2] Li Zewen, Zhang Hongchao, Shen Zhonghua, et al. Time-resolved temperature measurement and numerical simulation of millisecond laser irradiated silicon[J]. Journal of Applied Physics, 2013, 114: 033104. doi: 10.1063/1.4815872
    [3] Bertolotti M, Sette D, Stagni L, et al. Electron microscope observation of laser damage on GaAs, GaSb and InSb[J]. Radiation Effects, 1972, 16(3/4): 197-202.
    [4] Kmar A, Gupta S K, Taneja G, et al. Laser induced damage in GaAs at 1.06 μm wavelength: surface effects[J]. Optics & Laser Technology, 1996, 28(1): 25-34.
    [5] Singh A P, Kapoor A, Tripathi K N. Ripples and grain formation in GaAs surfaces exposed to ultrashort laser pulses[J]. Optics & Laser Technology, 2002, 34(7): 533-540.
    [6] 舒柏宏, 侯静. 砷化镓材料与激光相互作用的实验研究[J]. 红外与激光工程, 1999, 28(1): 40-42. doi: 10.3969/j.issn.1007-2276.1999.01.010

    Shu Bohong, Hou Jing. Experimental study of the interaction between laser and GaAs. Infrared and Laser Engineering, 1999, 28(1): 40-42 doi: 10.3969/j.issn.1007-2276.1999.01.010
    [7] Qi Haifeng, Wang Qingpu, Li Yongfu, et al. Thermal process and surface damage of GaAs induced by 532 nm continuous laser[J]. Applied Surface Science, 2007, 254(5): 1373-1376. doi: 10.1016/j.apsusc.2007.06.051
    [8] Bi J, Jin G Y, Ni X W, et al. Analysis of 532 nm long pulse laser-induced thermal decomposition damage to GaAs by semi-analytical method[J]. Acta Physica Sinica, 2012, 61: 244209. doi: 10.7498/aps.61.244209
    [9] 曾交龙, 陆启生, 舒柏宏, 等. 1.06 μm连续与脉冲激光对GaAs材料的联合破坏效应[J]. 强激光与粒子束, 1998, 10(2): 217-220. http://www.hplpb.com.cn/article/id/867

    Zeng Jiaolong, Lu Qisheng, Shu Bohong, et al. Combined damage effect of GaAs irradiated by 1.06 μm CW and pulse laser. High Power Laser and Particle Beams, 1998, 10(2): 217-220 http://www.hplpb.com.cn/article/id/867
    [10] Li Bohua. Study on damage of GaAs material induced by millisecond laser. Nanjing: Nanjing University of Science & Technology, 2017
    [11] 强希文, 刘峰, 张建泉. 脉冲强激光辐照半导体材料损伤效应的解析研究[J]. 光电子技术, 2000, 20(1): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJS200001012.htm

    Qiang Xiwen, Liu Feng, Zhang Jianquan. An analytical investigation on semiconductor material damage induced by pulsed high-power laser beams. Optoelectronic Technology, 2000, 20(1): 52-58 https://www.cnki.com.cn/Article/CJFDTOTAL-GDJS200001012.htm
    [12] 亚当斯A R. 砷化+镓的性质[M]. 北京: 科学出版社, 1990.

    Adams A R. Properties of GaAs. Beijing: Science Press, 1990
    [13] 王建利, 牛沈军, 兰天平, 等. 砷化镓材料[J]. 科技创新导报, 2010(32): 75-77. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201032066.htm

    Wang Jianli, Niu Shenjun, Lan Tianping, et al. GaAs materials. Science and Technology Innovation Herald, 2010(32): 75-77 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201032066.htm
    [14] 常本康. GaAs光电阴极[M]. 北京: 科学出版社, 2012.

    Chang Benkang. GaAs photocathode. Beijing: Science Press, 2012
    [15] Meyer J R, Kruer M R, Bartoli F J. Optical heating in semiconductors: Laser damage in Ge, Si, InSb, and GaAs[J]. Journal of Applied Physics, 1980, 51(10): 5513.
    [16] Hjort K, Soderkvist J, Schweitz J A. Gallium arsenide as a mechanical material[J]. Journal of Micromechanics and Microengineering, 1994, 4(1): 1-13.
    [17] 强希文, 张建泉, 刘峰, 等. 强激光辐照半导体材料的温升及热应力损伤的理论研究[J]. 中国激光, 2000, 27(8): 709-713. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200008008.htm

    Qiang Xiwen, Zhang Jianquan, Liu Feng, et al. Thermal stress damage of semiconductors induced by laser beam. Chinese Journal of Lasers, 2000, 27(8): 709-713 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200008008.htm
    [18] 祁海峰. 连续及纳秒激光对砷化镓材料的损伤研究[D]. 济南: 山东大学, 2008.

    Qi Haifeng. Damage of GaAs by CW and nanosecond laser. Ji'nan: Shandong University, 2008
  • 加载中
图(3)
计量
  • 文章访问数:  1201
  • HTML全文浏览量:  220
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-16
  • 修回日期:  2019-09-11
  • 刊出日期:  2019-11-15

目录

    /

    返回文章
    返回