留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于激光驱动质子束测量的腔式束流位置探测器模拟研究

李成财 朱昆 林晨 朱军高 吴旻剑 李东彧 徐筱菡 颜学庆

李成财, 朱昆, 林晨, 等. 用于激光驱动质子束测量的腔式束流位置探测器模拟研究[J]. 强激光与粒子束, 2019, 31: 065101. doi: 10.11884/HPLPB201931.190020
引用本文: 李成财, 朱昆, 林晨, 等. 用于激光驱动质子束测量的腔式束流位置探测器模拟研究[J]. 强激光与粒子束, 2019, 31: 065101. doi: 10.11884/HPLPB201931.190020
Li Chengcai, Zhu Kun, Lin Chen, et al. Cavity beam position monitor in laser-driven proton accelerator[J]. High Power Laser and Particle Beams, 2019, 31: 065101. doi: 10.11884/HPLPB201931.190020
Citation: Li Chengcai, Zhu Kun, Lin Chen, et al. Cavity beam position monitor in laser-driven proton accelerator[J]. High Power Laser and Particle Beams, 2019, 31: 065101. doi: 10.11884/HPLPB201931.190020

用于激光驱动质子束测量的腔式束流位置探测器模拟研究

doi: 10.11884/HPLPB201931.190020
基金项目: 

国家重大科学仪器设备开发专项 2012YQ030142

详细信息
    作者简介:

    李成财(1993-), 男,硕士研究生,从事激光加速器方面研究;1601210146@pku.edu.cn

    通讯作者:

    朱昆(1977-),男,高级工程师,从事加速器技术及应用方面研究;zhukun@pku.edu.cn

    林晨(1982-),女,研究员,从事激光加速器方面研究;lc0812@pku.edu.cn

  • 中图分类号: TL506

Cavity beam position monitor in laser-driven proton accelerator

  • 摘要: 根据激光驱动质子束流低发射度、短脉冲、单束团低电量的性质,研究腔式束流位置探测器(BPM)测量激光加速器产生的质子束团横向位置的可行性问题。针对质子束团的大横向分布和发散角问题,推导了其通过腔式BPM的输出信号,结果表明该信号与集中从束团对称中心、倾斜一定角度通过的束流产生的输出信号相同。依据上述原理,使用CST软件进行了腔式BPM的设计和仿真,确定了矩形谐振腔波导耦合的方案。讨论了该方案的腔式BPM对于激光加速束流的适用性和不同激光驱动质子束流参数的分辨率,并针对PW级激光加速系统进行了分辨率估算。
  • 图  1  (a) RCF测得约25%能散束流横向分布,(b)闪烁体测得约4%能散束流横向分布,(c)MCP测得约1%能散束流横向分布

    Figure  1.  Experimental results: (a) beams' transverse distribution with about 25% energy dispersion on RCF, (b) beams' transverse distribution with about 4% energy dispersion on scintillator, and (c) beams' transverse distribution with about 1% energy dispersion on MCP

    图  2  束团倾斜入射进腔式BPM的轨迹在x-z平面的投影

    Figure  2.  Projection of the trajectory of the beam into the cavity BPM in the x-z plane

    图  3  偶极模磁场(a)TM210模,(b)TM120模

    Figure  3.  H-field of dipole mode(a)TM210 mode, (b)TM120 mode

    图  4  TM210模(a)和TM120模(b)在x=1, 0.5, 0.2 mm的R/Q0

    Figure  4.  R/Q0 of TM210 mode. (a) and TM120 mode(b) at x=1, 0.5, 0.2 mm

    图  5  (a) 脉宽分布,(b) R/Q0分布

    Figure  5.  Estimated results: (a) distribution of pulse time, (b) distribution of R/Q0

    表  1  腔式BPM优化尺寸

    Table  1.   Optimum geometry of cavity BPM

    a /mm b/mm L/mm D/mm waveguide length X/mm waveguide position X/mm waveguide length Y/mm waveguide position Y/mm
    241.6 210 75 80 250 90.5 280 76
    下载: 导出CSV

    表  2  腔式BPM理论参数

    Table  2.   Theoretical parameters of cavity BPM

    f110/GHz (R/Q0)110 f210/GHz (Qext)210 (R/Q0)210 f120/GHz (Qext)120 (R/Q0)120
    0.9167 224.5 1.320 1955 0.1088 1.420 2103 0.1328
    下载: 导出CSV

    表  3  分辨率估计

    Table  3.   Resolution estimation

    E/MeV σt/ps q/pC (R/Q0)210 resolution/mm
    30 273 500 0.039 2 0.6
    50 208 150 0.050 7 0.8
    100 142 50 0.093 2 1
    下载: 导出CSV
  • [1] Schwoerer H, Pfotenhauer S, Jäckel O, et al. Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets[J]. Nature, 2006, 439(7075): 445-448. doi: 10.1038/nature04492
    [2] Snavely R A, Key M H, Hatchett S P, et al. Intense high-energy proton beams from petawatt-laser irradiation of solids[J]. Physical Review Letters, 2000, 85(14): 2945-2948. doi: 10.1103/PhysRevLett.85.2945
    [3] Tajima T, Habs D, Yan X Q. Laser acceleration of ions for radiation therapy[J]. Reviews of Accelerator Science and Technology, 2009, 2(01): 201-228. doi: 10.1142/S1793626809000296
    [4] 毕宏宇, 徐韬光, 傅世年. 中国散裂中子源快循环同步加速器环斜切型束流位置探测器设计[J]. 原子能科学技术, 2011, 45(5): 600-605. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201105018.htm

    Bi Hongyu, Xu Taoguang, Fu Shinian. Design of linear-cut beam position monitor in rapid cycling synchrotron of China spallation neutron source. Atomic Energy Science and Technology, 2011, 45(5): 600-605 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201105018.htm
    [5] Wang M W, Zhen S X, Zhang H Y, et al. Development of Shoebox BPM for Xi'an Proton Application Facility[C]//Proceedings of IPAC2016. 2016: 175-177.
    [6] Walston, S, Boogert, S, Chung, C, et al. Performance of a high resolution cavity beam position monitor system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 578(1): 1-22.
    [7] Tomoya Nakamura. Development of beam-position monitors with high position resolution[D]. Tokyo: The University of Tokyo, 2008.
    [8] Cowan, T E, Fuchs J, Ruhl H, et al. Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator[J]. Physical Review Letters, 2004, 92: 204801. doi: 10.1103/PhysRevLett.92.204801
    [9] Sargsyan V. Cross-talk problem in pill-box cavity[R]. TESLA Report 2003-01, 2003.
    [10] 李享. 腔式束流位置检测器的设计与实验[D]. 北京: 清华大学, 2009.

    Li Xiang. Design and experiments for cavity beam position monitor. Beijing: Tsinghua University, 2009
    [11] Kim I J, Pae K H, Choi I W, et al. Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses[J]. Physics of Plasmas, 2016, 23: 070701. doi: 10.1063/1.4958654
    [12] Liao Q, Wu M J, Gong Z, et al. Enhanced laser proton acceleration by target ablation on a femtosecond laser system[J]. Physics of Plasmas, 2018, 25: 063109. doi: 10.1063/1.5025239
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  1291
  • HTML全文浏览量:  464
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-18
  • 修回日期:  2019-03-26
  • 刊出日期:  2019-07-15

目录

    /

    返回文章
    返回