JASMIN-based parallel CP-FDTD modeling and application to shielding effectiveness prediction
-
摘要: 时域有限差分(FDTD)中采用环路法(CP)进行复杂金属细缝结构建模,可突破细缝结构对空间步长的约束而大大减少计算资源的消耗。提出CP-FDTD在大规模并行化平台的建模方法,通过对工程金属细缝结构自动建模以及对CP算法的自动适配,实现CP-FDTD的并行化处理。利用所开发的并行CP-FDTD算法分析了开不同工程细缝金属腔在0.05~3.00 GHz内的电磁屏蔽效能,结果表明所开发的具有金属细缝建模功能的并行化CP-FDTD自动适配处理技术,与加密网格的传统FDTD(fine-FDTD)计算结果吻合良好,且计算效率显著提升。Abstract: The contour path (CP) based modeling of thin slots in finite-difference time-domain (FDTD) simulation of complex structures breaks the constraint that the mesh size should be less than the smallest dimension of thin slots to get more accurate results, and therefore greatly reduce the consumption of computing resources. A large-scale parallelization platform JASMIN based modeling method of CP-FDTD is proposed in this paper. The thin slots can be automatically modeled and adaptively allocated in the proposed parallelized CP-FDTD algorithm. The electromagnetic shielding effectiveness (SE) of the metal cavity with different thin slots commonly used in industry is analyzed at the frequency range of 0.05 GHz to 3.00 GHz using the proposed parallel CP-FDTD algorithm. Results show that the SEs predicted using the developed parallel CP-FDTD are in good agreement with those obtained using finely meshed FDTD (fine-FDTD). Moreover, the computational efficiency is significantly improved.
-
Key words:
- parallelization /
- thin slot /
- contour path /
- finite-difference time-domain /
- shielding effectiveness
-
表 1 不同极化方式下金属腔内主要谐振频点和相应模式
Table 1. Main resonant frequency points and modes of the metal enclosure with different polarization
vertical polarization frequency/GHz 0.77 1.17 1.64 2.20 2.31 2.64 2.75 resonant mode TE101 TE102/TE201 TE103/TE301 TE303 TE312/TM312 TE105/TE501 TE120/TM120 horizontal frequency/GHz 1.46 1.70 1.78 2.07 2.30 2.69 2.92 polarization resonant mode TE011 TE012 TE211/TM211 TE013 TE213/TM213 TE214/TM214/TE412/TM412 TE015 -
[1] 葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 3版. 西安: 西安电子科技大学出版社, 2011.Ge Debiao, Yan Yubo. Finite-difference time-domain method for electromagnetic waves. 3rd ed. Xi'an: Xidian University Press, 2011 [2] Kuo C W, Kuo C M. Finite-difference time-domain analysis of the shielding effectiveness of metallic enclosures with apertures using a novel subgridding algorithm[J]. IEEE Trans Electromagnetic Compatibility, 2016: 1-7. [3] Bérenger J P. The Huygens subgridding for the numerical solution of the Maxwell equations[J]. Journal of Computational Physics, 2011, 230(14): 5635-5659. doi: 10.1016/j.jcp.2011.03.046 [4] Huang Z. A synchronized multigrid time domain method via Huygens subgridding and implicit algorithms[J]. IEEE Trans Antennas & Propagation, 2013, 61(5): 2605-2614. [5] Wang Jianbao, Wang Jinlong, Zhou Bihua, et al. An efficient 3-D HIE-FDTD method with weaker stability condition[J]. IEEE Trans Antennas & Propagation, 2016, 64(3): 998-1004. [6] Movahhedi M, Abdipour A, Nentchev A, et al. Alternating-direction implicit formulation of the finite-element time-domain method[J]. IEEE Trans Microwave Theory and Techniques, 2007, 55(6): 1322-1331. doi: 10.1109/TMTT.2007.897777 [7] Xiong Run, Chen Bin, Yin Qin, et al. Improved formalism for the FDTD analysis of thin-slot penetration by equivalence principle[J]. IEEE Antennas & Wireless Propagation Letters, 2011, 10(10): 655-657. [8] Wu C T, Pang Y H, Wu R B. An improved formalism for FDTD analysis of thin-slot problems by conformal mapping technique[J]. IEEE Trans Antennas and Propagation, 2003, 51(9): 2530-2533. doi: 10.1109/TAP.2003.816382 [9] 孙大伟, 俞集辉. 屏蔽分析中的三维FDTD细孔缝模型[J]. 电工技术学报, 2006, 21(10): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS200610002.htmSun Dawei, Yu Jihui, A 3D thin slot model by FDTD for shielding analysis, Transactions of China Electrotechnical Society, 2006, 21(10): 7-11 https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS200610002.htm [10] 方明江, 刘强, 闫丽萍, 等. 含三维复杂工程细缝金属腔的电磁屏蔽效能评估[J]. 强激光与粒子束, 2018, 30: 073201. doi: 10.11884/HPLPB201830.180047Fang Mingjiang, Liu Qiang, Yan Liping, et al. Evaluation of electromagnetic shielding effectiveness for metallic enclosure with complex thin slots. High Power Laser and Particle Beams, 2018, 30: 073201 doi: 10.11884/HPLPB201830.180047 [11] Li Hanyu, Zhou Haijing, Liu Yang, et al. Massively parallel FDTD program JEMS-FDTD and its applications in platform coupling simulation[C]//IEEE International Symposium on Electromagnetic Compatibility. 2014. [12] Cao Xiaolin, Zhang Aiqing, Liu Qingkai. Software quality assurance for the development of JASMIN infrastructure[C]//IEEE International Conference on Software Engineering & Applications. 2015. [13] 莫则尧, 张爱清. 并行自适应结构网格应用支撑软件框架(JASMIN2.0版)用户指南[G]. 2011.Mo Zeyao, Zhang Aiqing. User guide of J parallel adaptive structured mesh applications infrastructure(JASMIN 2.0). 2011 [14] 张青洪, 廖成, 李瀚宇, 等. 基于JASMIN框架的抛物方程有限差分解法并行计算及其应用[J]. 强激光与粒子束, 2015, 27: 083204. doi: 10.11884/HPLPB201527.083204Zhang Qinghong, Liao Cheng, Li Hanyu, et al. Parallel computing of finite difference algorithm for parabolic equation based on JASMIN and its application. High Power Laser and Particle Beams, 2015, 27: 083204 doi: 10.11884/HPLPB201527.083204