-
摘要: 中国散裂中子源(CSNS)加速器主要由一台直线加速器、一台1.6 GeV快循环加速器以及低能、高能输运线组成。其中有十二种类型校正磁铁,共计74台。校正磁铁是加速器运行的重要组成部件,必须测量其积分场及均匀性以确保加速器性能。为了快速和高效地完成磁铁测量任务,使用了旋转线圈测量系统。对测量原理、数据处理方法以及系统之间的测量结果对比进行了介绍。这对批量磁铁高效率测量是有帮助的。Abstract: The China Spallation Neutron Source (CSNS) accelerator mainly consists of a linear accelerator, a 1.6 GeV rapid cycling synchrotron (RCS), a low energy transport line and a high energy transport line. Among them, there are twelve types of corrector magnets, a total of 74 sets. In order to complete the measurement of the corrector magnets quickly and efficiently, the rotating coil measurement system is used. This paper will introduce the measurement principle, the magnetic measurement system, and a comparison of the measurement results in detail, which is helpful for efficient measurement of mass magnets.
-
Table 1. Parameters of partial corrector magnets for CSNS
magnet type quantity B0/T effective length/m integral field/ (T·m) aperture the width of good field region/mm(±1%) total weight/kg LRBT-80CH/V 15 0.01 0.2 0.002 80 mm×80 mm 70 35 RCS-300CH/V 34 — — 0.008 300 mm×300 mm 192(CH)/218(CV) 186 RTBT-180CH/V 8 0.04 0.2 0.008 180 mm×180 mm 153 144 RTBT-206CH/V 9 0.04 0.2 0.008 206 mm×206 mm 175 168 Table 2. Design parameters of radial coil
coil number magnet type radius r1/mm radius r2/mm radius r3/mm radius r4/mm outer coil/ turns inner coil/ turns skeleton length/mm A LR-80Q, LR-120Q, LR-80CH/V 36 25.5 27 16.5 280 420 750 B RT-180QA/B, RT-180CH/V, RT-206CH/V 76.5 54.18 57.38 35.06 120 180 1300 C RCS-230S, RCS-300CH/V 102 79.59 81.6 66.8 160 320 1300 Table 3. Comparison of the measurement results between the two measurement systems
X/mm uniformities of field integral (LRBT-80CH 8#) difference Y/mm uniformities of field integral (LRBT-80CV 2#) difference Hall probe rotating coil Hall probe rotating coil -35 0.011 122 0.010 134 0.000 988 -35 0.012 788 0.011 092 0.001 696 -30 0.007 015 0.006 459 0.000 556 -30 0.008 654 0.007 209 0.001 445 -25 0.003 989 0.003 876 0.000 113 -25 0.005 391 0.004 500 0.000 891 -20 0.002 343 0.002 143 0.000 200 -20 0.003 314 0.002 651 0.000 663 -15 0.000 848 0.001 029 -0.000 181 -15 0.001 701 0.001 418 0.000 283 -10 0.000 395 0.000 365 0.000 030 -10 0.000 939 0.000 630 0.000 309 -5 -0.000 180 0.000 042 -0.000 222 -5 0.000 462 0.000 177 0.000 285 0 0.000 000 0.000 000 0.000 000 0 0.000 000 0.000 000 0.000 000 5 0.000 386 0.000 191 0.000 195 5 0.000 377 0.000 046 0.000 331 10 0.000 697 0.000 664 0.000 033 10 0.000 603 0.000 376 0.000 227 15 0.001 355 0.001 481 -0.000 126 15 0.001 424 0.001 061 0.000 363 20 0.002 614 0.002 754 -0.000 140 20 0.002 994 0.002 222 0.000 772 25 0.004 698 0.004 653 0.000 045 25 0.004 453 0.004 043 0.000 410 30 0.007 811 0.007 422 0.000 389 30 0.007 415 0.006 779 0.000 636 35 0.011 989 0.011 371 0.000 618 35 0.011 832 0.010 797 0.001 035 Note: difference=value by Hall probe-value by Rotating coil -
[1] DiMarco J, Harding D J, Kashikhin V, et al. Test results of the AC field measurements of FERMILAB booster corrector magnets[C]//Proceedings of EPAC08. 2008: 2347-2349. [2] Harding D J, DiMarco J, Drennan C C, et al. Design and fabrication of a multi-element corrector magnet for the FERMILAB booster synchrotron[C]//Proceedings of PAC07. 2007: 452-454. [3] Parker B, Anerella M, Escallier J, et al. The SuperKEKB interaction region corrector magnets[C]//Proceedings of IPAC16. 2016: 1193-1195. [4] DiMarco J. Fundamentals of magnetic measurements with rotating coils: A tutorial[R]//19th International magnet Measurement Workshop. 2015. [5] Arpaia P, Buzio M, De Oliveira R, et al. A high-precision miniaturized rotating coil transducer for magnetic measurements[J]. Sensor and Actuators A: Physical, 2018, 274: 37-49. [6] Fu S N, Chen H S, Chen Y W, et al. Status of CSNS project[C]//Proceedings of IPAC13. 2013: 3995-3999. [7] Wang Sheng, An Yuwen, Fang Shouxian, et al. An overview of design for CSNS/RCS and beam transport[J]. Sci China-Phys Mech Astron, 2011, 54: 239-244. doi: 10.1007/s11433-011-4564-x [8] Inner Technique Note[Z]. CSNS-ACAP-TC-11-06, CSNS-ACAP-TC-12-13, CSNS-ACMT-TC-14-04. [9] Tanabe J. Iron dominated electromagnets design, fabrication, assembly and measurements[R]. SLAC-R-754, 2005. [10] Jain A K. Measurements of field quality using harmonic coils[R/OL]. https://www.bnl.gov/magnets/staff/Gupta/scmagcourse/Harmoniccoil-slides.PDF, 2001. [11] Zhao Jijiu, Yin Zhaosheng. Particle accelerator technology[M]. Beijing: Higher Education Press, 2006. [12] Zhou Jianxin, Kang Wen, Li Shuai, et al. Development of rotating coil measurement system for China Spallation Neutron Source[J]. High Power Laser and Particle Beams, 2018, 30: 105101. [13] Zhou J X, Li L, Yin Baogui, et al. A harmonic coil measurement system based on a dynamic signal acquisition device[J]. Nuclear Instruments and Methods in Physics Research A, 2010, 624: 549-553. doi: 10.1016/j.nima.2010.10.009 [14] Zhou Jianxin, Kang Wen, Yin Baogui, et al. The development of magnetic field measurement system for drift-tube linac quadrupole[J]. Nuclear Instruments and Methods in Physics Research A, 2015, 786: 142-146. doi: 10.1016/j.nima.2015.03.050 [15] Zhou Jianxin, Kang Wen, Li Shuai, et al. AC magnetic field measurement using a small flip coil system for rapid cycling AC magnets at the China Spallation Neutron Source (CSNS)[J]. Nuclear Instruments and Methods in Physics Research A, 2018, 880: 80-86. doi: 10.1016/j.nima.2017.10.040