留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁波与复合材料板上传输线的耦合分析

李小艳 闫丽萍 赵翔

李小艳, 闫丽萍, 赵翔. 电磁波与复合材料板上传输线的耦合分析[J]. 强激光与粒子束, 2019, 31: 053201. doi: 10.11884/HPLPB201931.190030
引用本文: 李小艳, 闫丽萍, 赵翔. 电磁波与复合材料板上传输线的耦合分析[J]. 强激光与粒子束, 2019, 31: 053201. doi: 10.11884/HPLPB201931.190030
Li Xiaoyan, Yan Liping, Zhao Xiang. Coupling of electromagnetic field to transmission line above the composite plate[J]. High Power Laser and Particle Beams, 2019, 31: 053201. doi: 10.11884/HPLPB201931.190030
Citation: Li Xiaoyan, Yan Liping, Zhao Xiang. Coupling of electromagnetic field to transmission line above the composite plate[J]. High Power Laser and Particle Beams, 2019, 31: 053201. doi: 10.11884/HPLPB201931.190030

电磁波与复合材料板上传输线的耦合分析

doi: 10.11884/HPLPB201931.190030
基金项目: 

国家自然科学基金项目 61877041

详细信息
    作者简介:

    李小艳(1991—),女,硕士研究生,主要从事电磁兼容方面的研究; 742224393@qq.com

    通讯作者:

    闫丽萍(1972—),女,教授,主要从事电磁兼容建模分析与电磁效应评估方面的研究; liping_yan@scu.edu.cn

  • 中图分类号: O441.4

Coupling of electromagnetic field to transmission line above the composite plate

  • 摘要: 利用单层均匀模型等效非均匀碳纤维复合材料,获得等效电磁参数,进而采用基于全波分析方法的仿真软件研究了碳纤维的排列方向以及入射波参数对传输线终端负载感应电流的影响。结果表明,当导线与碳纤维方向平行时,其场线耦合规律与同电导率导电板上的场线耦合变化规律基本一致,且负载感应电流大于导线与碳纤维正交时的感应电流。当电磁波垂直于复合材料板入射时,负载感应电流大于同等条件下电磁波平行入射时的感应电流。
  • 图  1  单板纤维复合结构

    Figure  1.  Single-panel fiber composite structure

    图  2  等效模型

    Figure  2.  Equivalent single-layer model

    图  3  计算模型

    Figure  3.  Calculation model

    图  4  不同入射情况下计算模型a终端负载Z2上的感应电流

    Figure  4.  Induced current on the termination load Z2 in terms of incident angle for Model a

    图  5  不同入射情况下计算模型b终端负载Z2上的感应电流

    Figure  5.  Induced current on the termination load Z2 in terms of incident angle for Model b

    图  6  电磁波平行于传输线平面入射时两种模型Z1Z2上感应电流的比较

    Figure  6.  Comparison of induced currents on the load Z1 and Z2 between Model a and Model b for different incidence

    图  7  两种模型中负载感应电流与相同入射和结构条件下有耗导电板上导线终端负载感应电流的比较(电磁波平行于传输线平面入射)

    Figure  7.  Comparison of induced current of the conducting wire above the CFRC to the wire above the lossy conducting plate for parallel incidence

    图  8  两种模型中负载感应电流与相同入射和结构条件下有耗导电板上导线终端负载上感应电流的比较(电磁波垂直于传输线入射)

    Figure  8.  Comparison of induced current of the conducting wire above the CFRC to the wire above the lossy conducting plate for vertical incidence

    图  9  电磁波平行和垂直于复合材料板入射时两种模型终端负载Z2上的感应电流

    Figure  9.  Induced current on the load Z2 for parallel and vertical incidence

  • [1] Chu H C, Jeng S K, Chen C H. Reflection and transmission characteristics of lossy periodic composite structures[J]. IEEE Trans Antennas Propagation, 1996, 44(3): 580-587.
    [2] Evans R W. Design guidelines for shielding effectiveness, current carrying capability, and the enhancement of conductivity of composite materials[R]. NASA Contractor Report, No. 4784, 1997.
    [3] Rosa I M D, Sarasini F, Sarto M S, et al. EMC impact of advanced carbon fiber/carbon nanotube reinforced composites for next-generation aerospace applications[J]. IEEE Trans Electromagnetic Compatibility, 2008, 50(3): 556-563. doi: 10.1109/TEMC.2008.926818
    [4] Leininger M, Thurecht F, Ruddle A. Advanced grounding methods in the presence of carbon fiber reinforced plastic structures[C]//2012 ESA Workshop on Aerospace EMC. 2012: 1-6.
    [5] Cabello M R, Fernandez S, Pous M, et al. SIVA UAV: A case study for the EMC analysis of composite air vehicles[J]. IEEE Trans Electromagnetic Compatibility, 2017, 59(4): 1103-1113. doi: 10.1109/TEMC.2017.2648507
    [6] Dawson J F, Austin A N, Flintoft I D, et al. Shielding effectiveness and sheet conductance of nonwoven carbon-fiber sheets[J]. IEEE Trans Electromagnetic Compatibility, 2017, 59(1): 84-92. doi: 10.1109/TEMC.2016.2601658
    [7] Holloway C L, Sarto M S, Johansson M. Analyzing carbon-fiber composite materials with equivalent-layer models[J]. IEEE Trans Electromagnetic Compatibility, 2005, 47(4): 833-844. doi: 10.1109/TEMC.2005.854101
    [8] Qi Jiaran, Wang Nannan, Xiao Shanshan. Removing Fabry-Pérot artifacts for electromagnetic homogenization of lossless and lossy dielectric composite based on scattering parameters[J]. IEEE Trans Dielectrics and Electrical Insulation, 2017, 24(3): 1852-1859. doi: 10.1109/TDEI.2017.005786
    [9] Cordill B D, Seguin S A, Ewing M S. Shielding effectiveness of carbon-fiber composite aircraft using large cavity theory[J]. IEEE Trans Instrumentation and Measurement, 2013, 62(4): 743-751. doi: 10.1109/TIM.2013.2240935
    [10] Rath V, Panwar V. Electromagnetic interference shielding analysis of conducting composites in near- and far-field region[J]. IEEE Trans Electromagnetic Compatibility, 2018, 60(6): 1795-1801. doi: 10.1109/TEMC.2017.2780883
    [11] Vas J V, Thomas M J. Electromagnetic shielding effectiveness of layered polymer nanocomposites[J]. IEEE Trans Electromagnetic Compatibility, 2018, 60(2): 376-384. doi: 10.1109/TEMC.2017.2719764
    [12] Jazzar A, Clavel E, Meunier G. Study of lightning effects on aircraft with predominately composite structures[J]. IEEE Trans Electromagnetic Compatibility, 2014, 56(3): 675-682. doi: 10.1109/TEMC.2013.2297444
    [13] Smorgonskiy A, Rachidi F, Rubinstein M, et al. Are standardized lightning current waveforms suitable for aircraft and wind turbine blades made of composite materials?[J]. IEEE Trans Electromagnetic Compatibility, 2017, 59(4): 1320-1328. doi: 10.1109/TEMC.2017.2682324
    [14] Huang Liyang, Gao Cheng, Guo Fei, et al. Lightning indirect effects on helicopter: numerical simulation and experiment validation[J]. IEEE Trans Electromagnetic Compatibility, 2017, 59(4): 1171-1179. doi: 10.1109/TEMC.2017.2651900
    [15] 廖意, 蔡昆, 张元, 等. 高强度纤维增强材料介电特性计算方法[J]. 物理学报, 2016, 65(2): 1-8.

    Liao Yi, Cai Kun, Zhang Yuan, et al. An approach to characterize dielectric properties of fiber-reinforced composites with high volume fraction. Acta Physica Sinica, 2016, 65(2): 1-8
    [16] 王天乐, 闫丽萍, 赵翔, 等. 包含非线性组件的系统级电磁效应分析方法[J]. 强激光与粒子束, 2014, 26: 073204. doi: 10.11884/HPLPB201426.073204

    Wang Tianle, Yan Liping, Zhao Xiang, et al. System-level analysis method of electromagnetic effects on an electronic system containing nonlinear components. High Power Laser and Particle Beams, 2014, 26: 073204 doi: 10.11884/HPLPB201426.073204
    [17] Leone M, Mantzke A. A Foster-type field-to-transmission line coupling model for broadband simulation[J]. IEEE Trans Electromagnetic Compatibility, 2014, 56(6): 1-8. doi: 10.1109/TEMC.2014.2373895
    [18] Otsuyama T, Naganawa J, Honda J, et al. Measuring signal environment in the aircraft surveillance frequency by flight experiments[C]//2018 International Symposium on Electromagnetic Compatibility. 2018: 44-47.
    [19] Tesche F M, Ianoz M V, Karlsson T. EMC analysis methods and computational models[M]. New York: Wiley, 1997.
  • 加载中
图(9)
计量
  • 文章访问数:  1217
  • HTML全文浏览量:  352
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-01
  • 修回日期:  2019-03-20
  • 刊出日期:  2019-05-15

目录

    /

    返回文章
    返回