留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

显示屏表面空气式静电放电实验特性

徐晓英 舒晓榕 刘鹏宇 甘瑛洁 张成铭

徐晓英, 舒晓榕, 刘鹏宇, 等. 显示屏表面空气式静电放电实验特性[J]. 强激光与粒子束, 2019, 31: 063203. doi: 10.11884/HPLPB201931.190035
引用本文: 徐晓英, 舒晓榕, 刘鹏宇, 等. 显示屏表面空气式静电放电实验特性[J]. 强激光与粒子束, 2019, 31: 063203. doi: 10.11884/HPLPB201931.190035
Xu Xiaoying, Shu Xiaorong, Liu Pengyu, et al. Experimental characteristics of surface discharging for air electrostatic discharge on display[J]. High Power Laser and Particle Beams, 2019, 31: 063203. doi: 10.11884/HPLPB201931.190035
Citation: Xu Xiaoying, Shu Xiaorong, Liu Pengyu, et al. Experimental characteristics of surface discharging for air electrostatic discharge on display[J]. High Power Laser and Particle Beams, 2019, 31: 063203. doi: 10.11884/HPLPB201931.190035

显示屏表面空气式静电放电实验特性

doi: 10.11884/HPLPB201931.190035
基金项目: 

国家自然科学基金项目 11775164

刘尚合院士专家工作站静电研究基金项目 BOIMTLSHJD20161005

详细信息
    作者简介:

    徐晓英(1957—),女,博士,主要从事静电放电、电磁兼容和数值计算方面的工作; xu_xiao_ying@126.com

  • 中图分类号: O441.1

Experimental characteristics of surface discharging for air electrostatic discharge on display

  • 摘要: 显示屏是人机交互的重要部件,当人体静电放电发生在显示屏表面时,有可能导致软硬故障。为了研究显示屏空气式静电放电实验特性,通过一个自制的装置对显示屏空气式静电放电电流和通过显示屏的位移电流进行了实验测量。研究发现:放电电流峰值随接近速度的增加而增加,上升时间随接近速度的增加而减小。在±10~±12 kV电压范围,受电弧长度的影响,上升时间增大,电流峰值变小。随着测量点与放电点之间距离的增大,位移电流波形峰值减小、上升时间增大,正极性放电峰值更大且扩散范围更广,而负极性放电上升时间增大更加明显。由位移电流波形及其分布可以计算出电荷密度。电荷密度随距离放电位置距离的增大而减小。与正极性相比,尽管负极性放电电流峰值较低,但电荷密度较高,说明负极性放电具有造成更高等级损伤风险的危害。
  • 图  1  测量系统示意图

    Figure  1.  Schematic diagram of measuring system

    图  2  无火花表面电晕电流和通过显示器的位移电流

    Figure  2.  Sparkless surface corona current and displacement current paths into the display

    图  3  测量位移电流的PCB板结构

    Figure  3.  Displacement current measuring PCB structure

    图  4  放电电流波形

    Figure  4.  Discharge current waveform

    图  5  不同接近速度的放电电流峰值

    Figure  5.  Peak current at different speeds

    图  6  不同接近速度的上升时间

    Figure  6.  Rise time at different speeds

    图  7  放电电压±8 kV的位移电流

    Figure  7.  Displacement current at discharge voltage ±8 kV

    图  8  放电电压±12 kV的位移电流

    Figure  8.  Displacement current at discharge voltage ±12 kV

    图  9  用来计算表面电荷密度的几何形状

    Figure  9.  Geometry used to calculate the surface charge density

    表  1  位移电流波形电流峰值

    Table  1.   Peak of displacement current waveform

    discharge voltage/kV total peak current/A peak current/A
    patch 1 (discharge center) patch 2 patch 3 patch 4 patch 5
    8 5.57 1.59 0.74 0.43 0.26 0.12
    -8 -2.43 -0.89 -0.46 -0.07
    12 5.40 1.75 0.96 0.43 0.19 0.11
    -12 -1.35 -0.57 -0.21 -0.07
    下载: 导出CSV

    表  2  位移电流波形上升时间

    Table  2.   Rise time of displacement current waveform

    discharge voltage/kV rise time of total current/ns rise time/ns
    patch1 (discharge center) patch2 patch3 patch 4 patch5
    8 0.41 0.46 1.67 3.78 4.05 4.27
    -8 0.34 0.69 2.08 9.24
    12 0.62 0.95 1.27 1.67 4.40 6.57
    -12 1.57 4.08 4.58 7.39
    下载: 导出CSV

    表  3  不同的贴片和极性的表面电荷密度(单位: nC/cm2)

    Table  3.   Surface charge densities for different patches and polarities(units: nC/cm2)

    discharge voltage/kV center circle (discharge center) annulus 2 annulus 3 annulus 4 annulus 5
    8 47.06 6.05 2.46 1.2 0.67
    -8 59.78 5.06 0.71
    12 75.73 8.60 2.93 1.06 0.45
    -12 94.77 7.00 1.42
    下载: 导出CSV
  • [1] Tsai J M, Chuang Y J, Liao S S, et al. Improve ESD protection on mobile phone with capacitive touch screen[C]//Cross Strait Quad-regional Radio Science & Wireless Technology Conference. 2011: 295-298.
    [2] Talebzadeh A, Gan Y, Kim K H, et al. Sparkless electrostatic discharge (ESD) on display screens[C]//2015 IEEE International Symposium on Electromagnetic Compatibility. 2015: 1284-1289.
    [3] Shinde S, Zhou J, Marathe S, et al. ESD to the display inducing currents measured using a substitution PC board[C]//IEEE International Symposium on Electromagnetic Compatibility. 2016: 707-712.
    [4] Zhou J, Shinde S, Guo Y, et al. IEC 61000-4-2 ESD test in display down configuration for cell phones[C]//IEEE International Symposium on Electromagnetic Compatibility. 2016: 713-718.
    [5] Ko J, Kim K, Kim H. System-level ESD immunity of mobile display driver IC to hard and soft failure[J]. Electrical & Electronic Engineering, 2012, 13(1): 329-335.
    [6] Hsu C T, Tseng J C, Chen Y L, et al. Board-level ESD of driver ICs on LCD panels[C]//IEEE International Reliability Physics Symposium. 2009, 9(1): 59-64.
    [7] Jiang Xiao, Pommerenke, D, Fan Zhou, et al. Model for ESD LCD upset of a portable product[C]//2010 IEEE International Symposium on Electromagnetic Compatibility. 2010: 354-358.
    [8] Kim K Y, Kim Y. Systematic analysis methodology for mobile phone's electrostatic discharge soft failures[J]. IEEE Trans Electromagnetic Compatibility, 2011, 53(3): 611-618. doi: 10.1109/TEMC.2011.2143719
    [9] Lingayat T D. Prediction of electrostatic discharge soft failure issue in case of a six layer PCB of a tablet using SIwave tool[C]//IEEE International Conference on Recent Trends in Electronics. 2017: 1361-1366.
    [10] Murooka Y, Takada T, Hiddaka K. Nanosecond surface discharge and charge density evaluation Part Ⅰ: review and experiments[J]. IEEE Electrical Insulation Magazine, 2001, 17(2): 6-16. doi: 10.1109/57.917527
    [11] Mueller L, Feser K, Pfendtner R, et al. Experimental investigation of discharges for charged plastic or plastic-coated materials[C]//Conference on Electrical Insulation & Dielectric Phenomena. 2001: 110-113.
    [12] 贺其元, 刘尚合, 陈京平, 等. 对空气式静电放电的研究[J]. 高电压技术, 2006, 32(7): 72-75. doi: 10.3969/j.issn.1003-6520.2006.07.020

    He Qiyuan, Liu Shanghe, Chen Jingping, et al. Research on air electrostatic discharge. High Voltage Engineering, 2006, 32(7): 72-75 doi: 10.3969/j.issn.1003-6520.2006.07.020
    [13] 原青云, 张希军, 刘尚合, 等. 影响空气式静电放电特性的相关因素分析[J]. 高电压技术, 2010, 36(10): 2500-2506. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201010030.htm

    Yuan Qingyun, Zhang Xijun, Liu Shanghe, et al. Analysis of relevant factors influencing the characteristics of air electrostatic discharge. High Voltage Engineering, 2010, 36(10): 2500-2506 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201010030.htm
    [14] Murooka Y, Koyama S. Nanosecond surface discharge study by using Dust figure techniques[J]. Journal of Applied Physics, 1973, 44(4): 1576-1580. doi: 10.1063/1.1662414
    [15] Pedersen P O. Die Ausbreitungs Geschwindigkeit der Lichtenbergschen Figuren und ihre Verwendung zur Messung sehr kurzer Zeiten[J]. Annalen der Physik, 2006, 374(19): 205-230.
    [16] 贺其元, 刘尚合, 徐晓英, 等. 接近速度对空气静电放电特性的影响[J]. 强激光与粒子束, 2007, 19(3): 524-528. http://www.hplpb.com.cn/article/id/3092

    He Qiyuan, Liu Shanghe, Xu Xiaoying, et al. Effects of approach velocity on air electrostatic discharge characteristics. High Power Laser and Particle Beams, 2007, 19(3): 524-528 http://www.hplpb.com.cn/article/id/3092
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  1372
  • HTML全文浏览量:  332
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-15
  • 修回日期:  2019-04-11
  • 刊出日期:  2019-07-15

目录

    /

    返回文章
    返回