留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单端探测温度和折射率的MZI光纤传感器

余俊良 冯国英 周寿桓

余俊良, 冯国英, 周寿桓. 基于单端探测温度和折射率的MZI光纤传感器[J]. 强激光与粒子束, 2019, 31: 091005. doi: 10.11884/HPLPB201931.190042
引用本文: 余俊良, 冯国英, 周寿桓. 基于单端探测温度和折射率的MZI光纤传感器[J]. 强激光与粒子束, 2019, 31: 091005. doi: 10.11884/HPLPB201931.190042
Yu Junliang, Feng Guoying, Zhou Shouhuan. MZI fiber optic sensor based on single-ended temperature and refractive index detection[J]. High Power Laser and Particle Beams, 2019, 31: 091005. doi: 10.11884/HPLPB201931.190042
Citation: Yu Junliang, Feng Guoying, Zhou Shouhuan. MZI fiber optic sensor based on single-ended temperature and refractive index detection[J]. High Power Laser and Particle Beams, 2019, 31: 091005. doi: 10.11884/HPLPB201931.190042

基于单端探测温度和折射率的MZI光纤传感器

doi: 10.11884/HPLPB201931.190042
基金项目: 

国家自然科学基金项目 11574221

详细信息
    作者简介:

    余俊良(1992—), 男,硕士研究生,方向为从事光纤传感器研究; JunliangYu@163.com

    通讯作者:

    冯国英(1969—), 女,教授,博士生导师,从事激光微纳工程研究; guoing_feng@scu.edu.cn

  • 中图分类号: O436

MZI fiber optic sensor based on single-ended temperature and refractive index detection

  • 摘要: 提出并演示了一种基于单端探测的光纤传感器,可同时测量温度和折射率。微结构光纤探头由两个玻璃光纤微球拼接在一起,并在该探头的末端利用真空电子束蒸镀一层铝膜以增加反射,从而形成微球结构的马赫-曾德尔型光纤传感头。实验结果表明,该器件的温度灵敏度和折射率可分别达到50.77 pm/℃和-21.94 nm/RIU。这项工作提出了一种低成本、高分辨率的基于光纤方法实现的多功能传感应用。单端探测的马赫曾德尔型光纤传感器小尺寸的优势可应用到小体积气体的测量,而它的全二氧化硅设计提供了高温或化学严酷环境的兼容性。
  • 图  1  实验装置图

    Figure  1.  Experimental device diagram

    图  2  不同光程差下的干涉光谱图

    Figure  2.  Interference spectra of different optical path differences

    图  3  (a) 不同温度下的实验反射光谱图(b)升温和降温的拟合曲线图

    (插图:不同温度下的仿真反射光谱图)

    Figure  3.  (a) Experimental reflectance spectra at different temperatures, (b) fit curve for warming and cooling

    (inset: simulated reflectance spectra at different temperatures)

    图  4  (a) 不同浓度NaCl溶液的反射光谱图(b) 折射率与波长偏移的拟合曲线图

    Figure  4.  (a) Reflection spectrum of different concentrations of NaCl solution, (b) fit curve of refractive index and wavelength shift

  • [1] Tan X, Li X, Geng Y, et al. Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications[J]. IEEE Photonics Technology Letters, 2015, 27(19): 2035-2038. doi: 10.1109/LPT.2015.2449654
    [2] Tan Y, Sun L P, Jin L, et al. Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications[J]. Optics Express, 2013, 21(1): 154. doi: 10.1364/OE.21.000154
    [3] Lee S M, Saini S S, Jeong M Y. Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors[J]. IEEE Photonics Technology Letters, 2010, 22(19): 1431-1433. doi: 10.1109/LPT.2010.2057416
    [4] Zhu Z, Liu L, Liu Z, et al. Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit[J]. Opt Lett, 2017, 42(15): 2948-2951. doi: 10.1364/OL.42.002948
    [5] Wang T, Wang M. Fabry-Pérot fiber sensor for simultaneous measurement of refractive index and temperature based on an in-fiber ellipsoidal cavity[J]. IEEE Photonics Technology Letters, 2012, 24(19): 1733-1736. doi: 10.1109/LPT.2012.2212184
    [6] Lu P, Men L, Sooley K, et al. Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature[J]. Applied Physics Letters, 2009, 94: 131110. doi: 10.1063/1.3115029
    [7] Geng Y, Li X, Tan X, et al. High-sensitivity Mach-Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper[J]. IEEE Sensors Journal, 2011, 11(11): 2891-2894. doi: 10.1109/JSEN.2011.2146769
    [8] Xu Y, Lu P, Qin Z, et al. Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer[J]. Optics Express, 2013, 21(3): 3031. doi: 10.1364/OE.21.003031
    [9] Pawar D, Rao C N, Choubey R K, et al. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections[J]. Applied Physics Letters, 2016, 108(4): 19.
    [10] Yue W, Yao X, Yuguang Y, et al. High-sensitivity pressure sensor based on fiber Mach-Zehnder interferometer[J]. Measurement Science and Technology, 2017, 28: 105102. doi: 10.1088/1361-6501/aa7dc6
    [11] 杨淑连, 申晋, 李泽田, 等. 强度调制的啁啾光纤光栅加速度传感器[J]. 强激光与粒子束, 2015, 27: 061014. doi: 10.11884/HPLPB201527.061014

    Yang Shulian, Shen Jin, Li Zetian, et al. Intensity-modulated acceleration sensor based on chirped-fiber grating. High Power Laser and Particle Beams, 2015, 27: 061014 doi: 10.11884/HPLPB201527.061014
    [12] Yang J, Yang M, Guan C Y, et al. In-fiber Mach-Zehnder interferometer with piecewise interference spectrum based on hole-assisted dual-core fiber for refractive index sensing[J]. Optics Express, 2018, 26(15): 19091-19099. doi: 10.1364/OE.26.019091
    [13] Jiang L, Yang J, Wang S, et al. Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity[J]. Optics Letters, 2011, 36(19): 3753-3755. doi: 10.1364/OL.36.003753
    [14] Sun X Y, Chu D K, Dong X R, et al. Highly sensitive refractive index fiber inline Mach-Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching[J]. Optics & Laser Technology, 2016, 77: JOLT_2015_2100.
    [15] Jha R, Villatoro J, Badenes G. Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing[J]. Applied Physics Letters, 2008, 93: 191106. doi: 10.1063/1.3025576
    [16] Zhu J, Zhang A P, Xia T, et al. Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer[J]. IEEE Sensors Journal, 2010, 10(9): 1415-1418. doi: 10.1109/JSEN.2010.2042592
    [17] Jha R, Villatoro J, Badenes G, et al. Refractometry based on a photonic crystal fiber interferometer[J]. Optics Letters, 2009, 34(5): 617-619. doi: 10.1364/OL.34.000617
    [18] Wu D, Zhu T, Chiang K S, et al. All single-mode fiber Mach-Zehnder interferometer based on two peanut-shape structures[J]. Journal of Lightwave Technology, 2012, 30(5): 805-810. doi: 10.1109/JLT.2011.2182498
    [19] Tong Z, Luan P, Cao Y, et al. Dual-parameter optical fiber sensor based on concatenated down-taper and multimode fiber[J]. Optics Communications, 2016, 358: 77-81. doi: 10.1016/j.optcom.2015.09.027
    [20] Xing R, Dong C, Wang Z, et al. Simultaneous strain and temperature sensor based on polarization maintaining fiber and multimode fiber[J]. Optics & Laser Technology, 2018, 102: 17-21.
  • 加载中
图(4)
计量
  • 文章访问数:  1283
  • HTML全文浏览量:  303
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-21
  • 修回日期:  2019-06-26
  • 刊出日期:  2019-09-15

目录

    /

    返回文章
    返回