留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广角任意反射面速度干涉仪的光学性质研究

吴宇际 王秋平 王峰 理玉龙 江少恩

吴宇际, 王秋平, 王峰, 等. 广角任意反射面速度干涉仪的光学性质研究[J]. 强激光与粒子束, 2019, 31: 032001. doi: 10.11884/HPLPB201931.190045
引用本文: 吴宇际, 王秋平, 王峰, 等. 广角任意反射面速度干涉仪的光学性质研究[J]. 强激光与粒子束, 2019, 31: 032001. doi: 10.11884/HPLPB201931.190045
Wu Yuji, Wang Qiuping, Wang Feng, et al. Optical properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2019, 31: 032001. doi: 10.11884/HPLPB201931.190045
Citation: Wu Yuji, Wang Qiuping, Wang Feng, et al. Optical properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2019, 31: 032001. doi: 10.11884/HPLPB201931.190045

广角任意反射面速度干涉仪的光学性质研究

doi: 10.11884/HPLPB201931.190045
基金项目: 

国家自然科学基金项目 11505170

详细信息
    作者简介:

    吴宇际(1993—), 男,博士研究生,从事极端瞬态光学诊断研究; yujiwu@mail.ustc.edu.cn

    通讯作者:

    王峰(1975—), 男,博士,研究员,从事激光聚变诊断研究; lfrc_wangfeng@163.com

    江少恩(1964—),男,博士,研究员,从事惯性约束聚变物理实验研究; jiangshn@vip.sina.com

  • 中图分类号: TN206

Optical properties of wide-angle velocity interferometer system for any reflector

  • 摘要: 研究了广角任意反射面速度干涉仪(VISAR)的光学性质。阐述了广角VISAR的原理,指出广角诊断靶中椭球镜的作用是将靶丸内表面成虚像在靶丸中心附近。使用Zemax模拟了成像弯曲对动态干涉条纹形成的影响,提出使用异形光纤面板进行像面矫正。研究了工程误差对干涉仪成像的影响,若要取得良好的成像效果,椭球镜的位置偏差不得多于30 μm,倾角不得超过4°,长轴方向加工误差需小于0.1 μm,短轴方向误差需小于4 μm,镜面反射率应高于70%。讨论了广角VISAR光学研究的进一步发展方向如影响动态条纹的更多可能因素、像面矫正的其他方法、物与像面的光学对应等。
  • 图  1  (a) 经典的线VISAR结构(b)广角VISAR靶结构及其光路传播示意图

    Figure  1.  (a) Classic line-VISAR structure and (b) wide-angle VISAR target structure and optical path in the target

    图  2  (a) 模拟使用的简化广角VISAR模型(b)探测面放置不同位置得到的干涉条纹(c)瞄靶情况(d)神光Ⅲ原型20171127214发次广角VISAR实验结果(e)成像优化方案(f)像面矫正前后样点的成像情况

    Figure  2.  (a) Simplified wide-angle VISAR model in simulation, (b) the interference fringe pattern that the detection surface is placed at different locations, (c) static imaging, (d) results of 20171127214 wide-angle VISAR shooting, (e) imaging optimization scheme and (f) imaging of sample points before and after correction

    图  3  (a) 装配理想时的成像情况(b)装配误差来源示意图(c) Δy=30 μm,Δr=30 μm时,Δθ为4°和6°时,像点的分布情况

    Figure  3.  (a) Image of sample points when assembled ideally; (b) schematic diagram of assembly error source and (c) Δy=30 μm, Δr=30 μm, distribution of image points when Δθ is 4° and 6°

    图  4  Δm/m=±0.06时,像点的分布情况

    Figure  4.  Distribution of image points when Δm/m=±0.06

    表  1  像面功率随Δy, Δr的变化

    Table  1.   Light intensity on the image surface under different position errors

    表  2  像面功率随Δθ的变化

    Table  2.   Light intensity on the image surface under different Δθ

    表  3  像面功率随Δm/m的变化

    Table  3.   Light intensity on the image surface under different Δm/m

    表  4  像面功率随η的变化

    Table  4.   Light intensity on the image surface under different η

  • [1] Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities thermonuclear (CTR) applications[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0
    [2] Lindl J. Development of the indirect drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2: 3933. doi: 10.1063/1.871025
    [3] Craxton R S, Anderson K S, Boehly T R, et al. Direct-drive inertial confinement fusion: A review[J]. Physics of Plasmas, 2015, 22: 110501. doi: 10.1063/1.4934714
    [4] Landen O L, Edwards J, Haan S W, et al. Capsule implosion optimization during the indirect-drive National Ignition Campaign[J]. Physics of Plasmas, 2011, 18: 051002. doi: 10.1063/1.3592170
    [5] Munro D H, Celliers P M, Collins G W, et al. Shock timing technique for the National Ignition Facility[J]. Physics of Plasmas, 2001, 8(5): 2245-2250. . doi: 10.1063/1.1347037
    [6] Barker L M, Hollenbach R E. Laser interferometer for measuring high velocities of any reflecting surface[J]. Journal of Applied Physics, 1972, 43(11): 4669-4675. doi: 10.1063/1.1660986
    [7] Celliers P M, Collins G W, Da Silva L B, et al. Accurate measurement of laser-driven shock trajectories with velocity interferometry[J]. Applied Physics Letters, 1998, 73(10): 1320. doi: 10.1063/1.121882
    [8] Celliers P M, Bradley D K, Collins G W, et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility[J]. Review of Scientific Instruments, 2004, 75(11): 4916-4929. doi: 10.1063/1.1807008
    [9] Wu Yuji, Wang Feng, Li Yulong, et al. Research on a wide-angle diagnostic method for shock wave velocity at SG-Ⅲ prototype facility[J]. Nucl Fusion, 2018, 58: 076003. doi: 10.1088/1741-4326/aabeed
    [10] Atzeni S, Ribeyre X, Schurtz G, et al. Shock ignition of thermonuclear fuel: principles and modelling[J]. Nuclear Fusion, 2014, 54: 054008. doi: 10.1088/0029-5515/54/5/054008
    [11] Robey H F, Boehly T R, Olson R E, et al. Experimental validation of a diagnostic technique for tuning the fourth shock timing on National Ignition Facility[J]. Physics of Plasmas, 2010, 17: 012703. doi: 10.1063/1.3276154
    [12] Piriz A R. Conditions for the ignition of imploding spherical shell targets[J]. Nuclear Fusion, 1996, 36(10): 1395. doi: 10.1088/0029-5515/36/10/I13
    [13] Petrasso R D. Rayleigh's challenge endures[J]. Nature, 1994, 367(6460): 217-218. doi: 10.1038/367217a0
    [14] Batani D, Casner A, Depierreux S, et al. Physics issues for shock ignition[J]. Nuclear Fusion, 2014, 54: 054009. doi: 10.1088/0029-5515/54/5/054009
    [15] Tikhonchuk V T, Colaïtis A, Vallet A, et al. Physics of laser-plasma interaction for shock ignition of fusion reactions[J]. Plasma Physics and Controlled Fusion, 2015, 58: 014018.
    [16] Soubiran F, Mazevet S, Winisdoerffer C, et al. Optical signature of hydrogen-helium demixing at extreme density-temperature conditions[J]. Physical Review B, 2013, 87: 165114. doi: 10.1103/PhysRevB.87.165114
    [17] Callahan D A, Meezan N B, Glenzer S H, et al. The velocity campaign for ignition on NIF[J]. Physics of Plasmas, 2012, 19: 056305. doi: 10.1063/1.3694840
    [18] Hicks D G, Boehly T R, Celliers P M, et al. Shock compression of quartz in the high-pressure fluid regime[J]. Physics of Plasmas, 2005, 12: 082702. doi: 10.1063/1.2009528
    [19] Hicks D G, Boehly T R, Eggert J H, et al. Dissociation of liquid silica at high pressures and temperatures[J]. Physical Review Letters, 2006, 97: 025502. doi: 10.1103/PhysRevLett.97.025502
    [20] Edwards J, Lorenz K T, Remington B A, et al. Laser-driven plasma loader for shockless compression and acceleration of samples in the solid state[J]. Physical Review Letters, 2004, 92: 075002. doi: 10.1103/PhysRevLett.92.075002
    [21] Murakami M, Nagatomo H, Johzaki T, et al. Impact ignition as a track to laser fusion[J]. Nuclear Fusion, 2014, 54: 054007. doi: 10.1088/0029-5515/54/5/054007
    [22] McWilliams R S, Eggert J H, Hicks D G, et al. Strength effects in diamond under shock compression from 0.1 to 1 TPa[J]. Physical Review B, 2010, 81: 014111. doi: 10.1103/PhysRevB.81.014111
    [23] Moody J D, Robey H F, Celliers P M, et al. Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments. Physics of Plasmas, 2014, 21: 092702. doi: 10.1063/1.4893136
    [24] Robey H F, Moody J D, Celliers P M, et al. Measurement of high-pressure shock waves in cryogenic deuterium-tritium ice layered capsule implosions on NIF[J]. Physical Review Letters, 2013, 111: 065003. doi: 10.1103/PhysRevLett.111.065003
    [25] Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America, 1982, 72(12): 156-160.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  1320
  • HTML全文浏览量:  265
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-21
  • 修回日期:  2019-03-14
  • 刊出日期:  2019-03-15

目录

    /

    返回文章
    返回