留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于液晶的U波段电控移相超材料

赵怿哲 黄成 卿安永

赵怿哲, 黄成, 卿安永. 基于液晶的U波段电控移相超材料[J]. 强激光与粒子束, 2019, 31: 063001. doi: 10.11884/HPLPB201931.190068
引用本文: 赵怿哲, 黄成, 卿安永. 基于液晶的U波段电控移相超材料[J]. 强激光与粒子束, 2019, 31: 063001. doi: 10.11884/HPLPB201931.190068
Zhao Yizhe, Huang Cheng, Qing Anyong. Voltage tunable metamaterial for phase shifting at U-band based on liquid crystal[J]. High Power Laser and Particle Beams, 2019, 31: 063001. doi: 10.11884/HPLPB201931.190068
Citation: Zhao Yizhe, Huang Cheng, Qing Anyong. Voltage tunable metamaterial for phase shifting at U-band based on liquid crystal[J]. High Power Laser and Particle Beams, 2019, 31: 063001. doi: 10.11884/HPLPB201931.190068

基于液晶的U波段电控移相超材料

doi: 10.11884/HPLPB201931.190068
基金项目: 

装备预研基金重点项目 6140923070101

国家自然科学基金资助项目 61775026

四川省科技计划项目 2018SZ0359

四川省科技计划项目 2017JY0070

东莞市产学研合作项目 201550921500087

详细信息
    作者简介:

    赵怿哲(1991-), 男,博士研究生,从事微波应用及新型微波器件研究;zhaoyz91@163.com

  • 中图分类号: O451

Voltage tunable metamaterial for phase shifting at U-band based on liquid crystal

  • 摘要: 基于液晶材料(LC)的双折射特性提出了一种基于液晶材料的短十字型阵列电控超材料,超材料包括了上层石英板,金属结构阵,中间液晶介质层,金属地板以及下层石英板。相比于传统的阵列天线设计,运用了新的相位补偿方法,即通过加电改变反射阵列单元的介质基板液晶的介电常数得到的相位曲线实现0~250°的相位补偿,使得超材料实现在U波段的相位变化。仿真结果表明,通过将偏压从0增加到14 V,超材料在52 GHz时呈现250°的相移。此外,此超材料的谐振频率可从53.6 GHz连续可逆地转移到49.9 GHz。通过调节超材料液晶激励区域的介电常数即改变阵列单元的谐振特性,实现了相位补偿,为平面反射阵列天线的设计提供了一种新思路。
  • 图  1  液晶超材料结构图

    Figure  1.  Geometry of LC-based metamaterial

    图  2  电磁波入射到超材料上

    Figure  2.  Electromagnetic wave incidence on metamaterial array

    图  3  液晶超材料不同长L下的回波损耗

    Figure  3.  |S11| of LC-based metamaterial at different lengths of parameter L

    图  4  液晶超材料不同长度L下的移相量

    Figure  4.  Phase shift of LC-based metamaterial at different lengths of parameter L

    图  5  液晶超材料不同长度W下的回波损耗

    Figure  5.  |S11| of LC-based metamaterial at different lengths of parameter W

    图  6  液晶超材料不同长度W下的移相量

    Figure  6.  Phase shift of LC-based metamaterial at different lengths of parameter W

    图  7  正入射(θ=0°, ϕ=0°)情况下的液晶超材料的回波损耗和相位

    Figure  7.  LC-based metamaterial at normal incidence (θ=0°, ϕ=0°)

    图  8  不同入射角情况下的液晶超材料的的回波损耗

    Figure  8.  |S111| of LC-based metamaterial at different incident angles

  • [1] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788-792. doi: 10.1126/science.1096796
    [2] Zhu Jianfei, Jiang Wei, Liu Yichao, et al. Three-dimensional magnetic cloak working from D.C. to 250 kHz[J]. Nature Communications, 2015, 6: 8931. doi: 10.1038/ncomms9931
    [3] Wang Pu, Slipchenko M N, Mitchell J, et al. Far-field imaging of non-fluorescent species with subdiffraction resolution[J]. Nature Photonics, 2013, 7: 449-453. doi: 10.1038/nphoton.2013.97
    [4] Tyc T, Zhang Xiang. Forum optics: Perfect lenses in focus[J]. Nature, 2011, 480: 42-43. doi: 10.1038/480042a
    [5] 马宇, 章海锋, 刘婷, 等. 一种波束扫描超材料天线的设计[J]. 强激光与粒子束, 2018, 30: 103206. doi: 10.11884/HPLPB201830.180088

    Ma Yu, Zhang Haifeng, Liu Ting, et al. Design of beam scanning metamaterial antenna. High Power Laser and Particle Beams, 2018, 30: 103206. doi: 10.11884/HPLPB201830.180088
    [6] Farinelli P, Chiuppesi E, Maggio F D, et al. Development of different K-band MEMS phase shifter designs for satellite COTM terminals[J]. International Journal of Microwave and Wireless Technologies, 2010, 2(3/4): 1868-1871.
    [7] Houzet G, Burgnies L, Velu G, et al. Dispersion and loss of ferroelectric Ba0.5Sr0.5TiO3 thin films up to 110 GHz[J]. Applied Physics Letters, 2008, 93: 053507. doi: 10.1063/1.2969469
    [8] Bulja S, Mirshekar-Syahkal D, James R, et al. Measurement of dielectric properties of nematic liquid crystals at millimeter wavelength[J]. IEEE Trans Microwave Theory and Techniques, 2010, 58(12): 3493-3501.
    [9] Yang Fuzi, Sambles J R. Resonant transmission of microwaves through a narrow metallic slit[J]. Physical review letters, 2002, 89: 063901. doi: 10.1103/PhysRevLett.89.063901
    [10] Yang Fuzi, Sambles J R. Determination of the permittivity of nematic liquid crystals in the microwave region[J]. Liquid Crystals, 2003, 30(5): 599-602. doi: 10.1080/0267829031000097466
    [11] Ma Shuang, Yang Guohui, Erni D, et al. Liquid crystal leaky-wave antennas with dispersion sensitivity enhancement[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(5): 792-801. doi: 10.1109/TCPMT.2017.2683529
    [12] Foo S. Liquid-crystal-tunable metasurface antennas[C]//11th European Conference on Antennas and Propagation. 2017: 16900604.
    [13] Bildik S, Dieter S, Fritzsch C, et al. Reconfigurable folded reflect array antenna based upon liquid crystal technology[J]. IEEE Trans Antennas and Propagation, 2015, 63(1): 122-132. doi: 10.1109/TAP.2014.2367491
  • 加载中
图(8)
计量
  • 文章访问数:  1117
  • HTML全文浏览量:  270
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-10
  • 修回日期:  2019-04-16
  • 刊出日期:  2019-07-15

目录

    /

    返回文章
    返回