留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直线型端口类盒型拓扑结构微带滤波器设计

刘庆 吕大龙 孙久会 周东方 张德伟

刘庆, 吕大龙, 孙久会, 等. 直线型端口类盒型拓扑结构微带滤波器设计[J]. 强激光与粒子束, 2019, 31: 093002. doi: 10.11884/HPLPB201931.190077
引用本文: 刘庆, 吕大龙, 孙久会, 等. 直线型端口类盒型拓扑结构微带滤波器设计[J]. 强激光与粒子束, 2019, 31: 093002. doi: 10.11884/HPLPB201931.190077
Liu Qing, Lü Dalong, Sun Jiuhui, et al. In-line ports microstrip bandpass filters in box-like coupling schemes[J]. High Power Laser and Particle Beams, 2019, 31: 093002. doi: 10.11884/HPLPB201931.190077
Citation: Liu Qing, Lü Dalong, Sun Jiuhui, et al. In-line ports microstrip bandpass filters in box-like coupling schemes[J]. High Power Laser and Particle Beams, 2019, 31: 093002. doi: 10.11884/HPLPB201931.190077

直线型端口类盒型拓扑结构微带滤波器设计

doi: 10.11884/HPLPB201931.190077
详细信息
    作者简介:

    刘庆(1991—), 男,博士,从事射频/微波器件研究; liuqing8123@163.com

    通讯作者:

    吕大龙(1981—), 男,讲师,从事射频/微波器件研究; ldl2076@163.com

  • 中图分类号: TN715

In-line ports microstrip bandpass filters in box-like coupling schemes

  • 摘要: 针对微波带通滤波器小型化、高性能的应用需求,研究了基于双模方形环谐振器的直线型端口的两阶带通滤波器响应特性,进一步提出使用单模谐振器和双模谐振器相结合设计直线型端口的高阶微带带通滤波器。提出的直线型端口双模方形环微带滤波器具有类盒型拓扑结构,能够实现灵活的频率响应特性,而且传输零点的位置可调,能够满足不同的应用需求。由于存在寄生的对角交叉耦合路径,提出的类盒型拓扑结构微带滤波器可以实现一个额外的传输零点。为了验证结构和设计方法的可行性,设计了两款中心频率为5.2 GHz的三阶和五阶带通滤波器,最后进行加工和测试。耦合矩阵响应、仿真和测试结果一致性较好,表明了该结构实现高性能滤波器的可行性。
  • 图  1  滤波器结构和拓扑结构

    Figure  1.  Filter structure and its coupling scheme

    图  2  双模谐振器的谐振频率变化特性及电场分布(Le=11.8 mm, W1=0.8 mm)

    Figure  2.  Resonances characteristic and eclectic-field distributions of the dual-mode resonator (Le=11.8 mm, W1=0.8 mm)

    图  3  外部Q值随馈电结构参数改变而变化

    Figure  3.  External quality factor changes with structure parameters

    (W0=1.54 mm, W1=0.8 mm, W2=0.95 mm, Win=0.4 mm, Le=11.8 mm)

    图  4  传输零点随馈线位置Din的改变而变化

    Figure  4.  Simulated locations of transmission zeros change with positions of feeding lines

    图  5  两种单模谐振器加载双模方形环的三阶滤波器

    Figure  5.  Two types of dual-mode loop filters with single-mode resonator loaded

    图  6  传输零点随馈线位置Din的改变而变化

    Figure  6.  Simulated locations of transmission zeros changed by positions of feeding lines

    图  7  四阶滤波器结构及相应的拓扑结构

    Figure  7.  Layout of fourth-order filter and its coupling scheme

    图  8  传输零点随参数D的改变而变化

    Figure  8.  Simulated locations of transmission zeros change with positions of feeding lines

    图  9  五阶滤波器结构及相应的拓扑结构

    Figure  9.  Layouts of the proposed fifth-order filters and their coupling schemes

    图  10  五阶拓展的盒型拓扑结构滤波器的两种响应

    Figure  10.  Two response types of fifth-order extended box-section coupling scheme

    图  11  优化后3阶滤波器,(a)仿真、测试结果和耦合矩阵响应,(b)宽频带测试结果

    Figure  11.  The optimized 3rd filter (a) simulated, measured and synthesized responses (b) measured wide frequency band response

    图  12  优化后5阶滤波器, (a)仿真、测试结果和耦合矩阵响应,(b) 宽频带测试结果

    Figure  12.  The optimized 5th filter (a) simulated, measured and synthesized responses (b) measured wide frequency-band response

  • [1] Zhu Lei, Wu Ke. A joint field/circuit model of line-to-ring coupling structures and its application to the design of microstrip dual-mode filters and ring resonator circuits[J]. IEEE Trans Microw Theory Tech, 1999, 47(10): 1938-1948. doi: 10.1109/22.795067
    [2] Liu Haiwen, Zhao Yulong, Li Xiaohua, et al. Compact superconducting bandpass filter using dual-mode loop resonators[J]. IEEE Trans Appl Supercond, 2013, 23(3): 1501304. doi: 10.1109/TASC.2012.2235900
    [3] Gorur A. A novel dual-mode bandpass filter with wide stopband using the properties of microstrip open-loop resonator[J]. IEEE Microw Wireless Compon Lett, 2002, 12(10): 386-388. doi: 10.1109/LMWC.2002.804560
    [4] Feng Wenjie, Gao Xin, Che Wenquan, et al. Bandpass filter loaded with open stubs using dual-mode ring resonator[J]. IEEE Microw Wireless Compon Lett, 2015, 25(5): 295-297. doi: 10.1109/LMWC.2015.2410174
    [5] Gorur A. Description of coupling between degenerate modes of a dual-mode microstrip loop resonator using a novel perturbation arrangement and its dual-mode bandpass filter applications[J]. IEEE Trans Microw Theory Tech, 2004, 52(2): 671-677. doi: 10.1109/TMTT.2003.822033
    [6] Amari S. Comments on "Description of coupling between degenerate modes of a dual-mode microstrip loop resonator"[J]. I IEEE Trans Microw Theory Tech, 2004, 52(9): 2190-2192. doi: 10.1109/TMTT.2004.834157
    [7] Kundu A C, Awai I. Control of attenuation pole frequency of a dual-mode microstrip ring resonator bandpass filter[J]. IEEE Trans Microw Theory Tech, 2001, 49(6): 1113-1117. doi: 10.1109/22.925499
    [8] Awida M H, Safwat A M E, El-Hennawy H. Dual-mode microstrip bandpass filter using ring of arrows resonator[J]. Electron Lett, 2005, 41(24): 1335-1336. doi: 10.1049/el:20053290
    [9] Gorur A, Karpuz C, Akpinar M. A reduced-size dual-mode bandpass filter with capacitively loaded open-loop arms[J]. IEEE Microw Wireless Compon Lett, 2003, 13(9): 385-387. doi: 10.1109/LMWC.2003.817136
    [10] Fu Sen, Wu Bian, Chen Jia, et al. Novel second-order dual-mode dual-band filters using capacitance loaded square loop resonator[J]. IEEE Trans Microw Theory Tech, 2012, 60(3): 477-483. doi: 10.1109/TMTT.2011.2181859
    [11] Hsieh L H, Chang Kai. Dual-mode quasi-elliptic-function bandpass filters using ring resonators with enhanced-coupling tuning stubs[J]. IEEE Trans Microw Theory Tech, 2002, 50(5): 1340-1345. doi: 10.1109/22.999148
    [12] Tang Mingchun, Shi Ting, Chen Shiyong, et al. Dual-band bandpass filter based on a single triple-mode ring resonator[J]. Electron Lett, 2016, 52(9): 722-724. doi: 10.1049/el.2015.2692
    [13] Chen J X, Yum T Y, Li J L, et al. Dual-mode dual-band bandpass filter using stacked-loop structure[J]. IEEE Microw Wireless Compon Lett, 2006, 16(9): 502-504. doi: 10.1109/LMWC.2006.880705
    [14] Sun Sheng. A dual-band bandpass filter using a single dual-mode ring resonator[J]. IEEE Microw Wireless Compon Lett, 2011, 21(6): 298-300. doi: 10.1109/LMWC.2011.2132119
    [15] Cameron R J, Harish A R, Radcliffe C J. Synthesis of advanced microwave filters without diagonal cross-couplings[J]. IEEE Trans Microw Theory Tech, 2003, 50(12): 2862-2872.
    [16] Amari S, Tadeson G, Cihlar J, et al. Pseudo-elliptic microstrip line filters with zero-shifting properties[J]. IEEE Microw Wireless Compon Lett, 2004, 14(7): 346-348. doi: 10.1109/LMWC.2004.829288
    [17] Liao Chingku, Chi Peiling, Chang Chiyang. Microstrip realization of generalized Chebyshev filters with box-like coupling schemes[J]. IEEE Trans Microw Theory Tech, 2007, 55(1): 147-153. doi: 10.1109/TMTT.2006.888580
    [18] Hong Jiasheng, Lancaster M J. Microstrip filter for RF/microwave applications[M]. New York: John Wiley & Sons, Inc, 2001.
    [19] Levy R. Filters with single transmission zeros at real or imaginary frequencies[J]. IEEE Trans Microw Theory Tech, 1976, 24(4): 172-181. doi: 10.1109/TMTT.1976.1128811
  • 加载中
图(12)
计量
  • 文章访问数:  1358
  • HTML全文浏览量:  406
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-21
  • 修回日期:  2019-06-05
  • 刊出日期:  2019-09-15

目录

    /

    返回文章
    返回