Design of X-band high power wideband dual-helical reflectarray antenna
-
摘要: 为了提升高功率微波辐射天线的带宽,提出并设计了一种X波段高功率圆极化反射阵列天线,该天线采用喇叭天线作为馈源,阵列天线单元由可旋转金属双螺旋线构成,通过旋转螺旋线可以实现360°的相位补偿,同时反射损耗极小。设计了15×15矩形栅格螺旋反射阵列天线,全波仿真结果表明:该口径为315 mm的阵列天线在中心频点9.3 GHz下,增益为28 dB,轴比为0.53 dB,口径效率为52.6%;在8.5~10.9 GHz的频带范围内增益大于26.8 dB,轴比小于1.14 dB,1 dB增益带宽和40%以上口径效率带宽均大于21%;在真空中所能承受的最大功率约为207 MW。Abstract: In order to broaden the bandwidth of high power microwave radiation antenna, an X-band high power circularly polarized reflectarray antenna constructed by mechanically rotational helical elements is proposed and investigated. The array antenna is fed by an X-band left-handed circularly polarization circular horn. The variable rotation of helical element enables full 360° phase adjustment with low reflection loss. The rectangular reflectarray antenna of 225-element is put forward and simulated. Full-wave simulation result shows that at 9.3 GHz, the antenna gain is 28 dB, the antenna axial ratio is 0.53 dB and the aperture efficiency is 52.6%. In the range of 8.5 to 10.9 GHz, the gain is over 26.8 dB, the axial ratio is below 1.14 dB, and both the 1-dB gain bandwidth and the 40% aperture efficiency bandwidth are over 21%. The power handling capacity of the reflectarray antenna is found to be 207 MW in vacuum.
-
Key words:
- high power microwave /
- wideband /
- helical antenna /
- reflectarray antenna /
- circular polarization
-
表 1 主要频点下反射阵列天线的辐射特性总结
Table 1. Results of the radiation characteristics of reflectarray antenna
f/GHz gain/dB axial ratio sidelobe level/dB X-polarization level/dB 8.5 26.8 1.05 -18.3 -25.7 8.8 27.3 1.14 -21.7 -25.4 9.3 28.0 1.07 -21.1 -28.8 10.1 28.4 1.04 -20.8 -26.2 10.9 27.4 1.08 -12.2 -18.6 -
[1] Vlasov S N, Orlova I M. Quasioptical transformer which transforms the waves in a waveguide having a circular cross section into highly directional wave beam[J]. Radiofizika, 1974, 17(1): 148-154. [2] Courtney C C, Baum C E. The coaxial beam-rotating antenna (COBRA): Theory of operation and measures performance[J]. IEEE Trans Antenna and Propagation, 2000, 48(2): 299-309. doi: 10.1109/8.833080 [3] Yang S W, Li H F. Numerical modeling of 8 mm TM01-TE11 mode converter[J]. Int J Infrared and Millimeter Waves, 1996, 17(11): 1935-1943. [4] Eisenhart R L. A novel wideband TM01-TE11 mode converter[J]. IEEE Trans Microwave Theory and Techniques, 1988, 1 (11): 249-252. [5] Li Xiangqiang, Liu Qingxiang, Wu Xiaojiang, et al. A GW level high-power radial line helical array antenna[J]. IEEE Trans Antennas and Propagations, 2008, 56(9): 2943-2948. doi: 10.1109/TAP.2008.928781 [6] Li Xiangqiang, Liu Qingxiang, Zhang Jianqiong, et al. 16-element single-layer rectangular radial line helical array antenna for high-power applications[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9(1): 708-711. [7] Liang Yuan, Zhang Jianqiong, Liu Qingxiang, et al. High-power radial-line helical subarray for high-frequency applications[J]. IEEE Trans Antennas and Propagation, 2018, 66(8): 4034-4041. doi: 10.1109/TAP.2018.2840840 [8] Yuan Chengwei, Peng Shengren, Shu Ting, et al. Designs and experiments of a novel radial line slot antenna for high-power microwave application[J]. IEEE Trans Antennas and Propagation, 2013, 61(10): 4940-4946. doi: 10.1109/TAP.2013.2273214 [9] Peng Shengren, Yuan Chengwei, Shu Ting, et al. Design of a concentric array radial line slot antenna for high-power microwave application[J]. IEEE Trans Plasma Science, 2015, 43(10): 3527-3529. doi: 10.1109/TPS.2015.2392097 [10] Zhao Xuelong, Yuan Chengwei, Liu Lie, et al. All-metal transmit-array for circular polarization design using rotated cross-slot elements for high power microwave applications[J]. IEEE Trans Antennas and Propagation, 2017, 65(12): 7340-7344. [11] Guo Letian, Huang Wenhua, Chang Chao, et al. Studies of a leaky-wave phased array antenna for high-power microwave applications[J]. IEEE Trans Plasma Science, 2016, 44(10): 2366-2375. doi: 10.1109/TPS.2016.2601105 [12] Huang J, Encinar J A. Reflectarray antennas[M]. Hoboken: Wiley, 2007. [13] Miller R B, McCullough W E, Lancarter K T, et al. Super-retron theory and experiments[J]. IEEE Trans Plasma Science, 1992, 20(3): 332-343. doi: 10.1109/27.142834