留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于智能算法的CR39径迹刻蚀过程模拟

齐伟 贺书凯 谷渝秋

齐伟, 贺书凯, 谷渝秋. 基于智能算法的CR39径迹刻蚀过程模拟[J]. 强激光与粒子束, 2019, 31: 056006. doi: 10.11884/HPLPB201931.190088
引用本文: 齐伟, 贺书凯, 谷渝秋. 基于智能算法的CR39径迹刻蚀过程模拟[J]. 强激光与粒子束, 2019, 31: 056006. doi: 10.11884/HPLPB201931.190088
Qi Wei, He Shukai, Gu Yuqiu. Intelligent algorithm based simulation of track etching process on CR39 detector[J]. High Power Laser and Particle Beams, 2019, 31: 056006. doi: 10.11884/HPLPB201931.190088
Citation: Qi Wei, He Shukai, Gu Yuqiu. Intelligent algorithm based simulation of track etching process on CR39 detector[J]. High Power Laser and Particle Beams, 2019, 31: 056006. doi: 10.11884/HPLPB201931.190088

基于智能算法的CR39径迹刻蚀过程模拟

doi: 10.11884/HPLPB201931.190088
基金项目: 

科学挑战计划项目 TZ2018005

国家重点研发项目 2016YFA0401100

详细信息
    作者简介:

    齐伟(1986—), 男,博士研究生,从事激光核物理及激光加速中的带电粒子诊断; bosqw7@163.com

    通讯作者:

    谷渝秋(1968—), 男,博士,研究员,从事强场等离子体物理、激光等离子体诊断技术等研究; yqgu@caep.cn

  • 中图分类号: O571.1

Intelligent algorithm based simulation of track etching process on CR39 detector

  • 摘要: CR39可以用于激光等离子物理实验中的离子探测,并给出离子数目、种类和能量信息。通过采用唯象模型,利用离子在CR39中径迹形成的阻止本领动力学方程以及粒子群智能算法对径迹形成的过程进行了数值化模拟,研究了CR39中离子径迹在刻蚀过程中的演化过程,获得了入射离子能量和径迹直径、深度的对应关系,并且发现当离子射程与刻蚀深度相等时,径迹深度最大,给出了利用总刻蚀时间计算最大径迹深度对应的临界能量的公式。
  • 图  1  径迹刻蚀唯像模型图

    Figure  1.  Phenomenological model of track etching

    图  2  径迹刻蚀示意图

    Figure  2.  Picture of track etching process

    图  3  能量为20 MeV的质子入射到CR39中,能量和阻止本领随入射深度的变化曲线

    Figure  3.  Depth dependence of energy and energy loss in CR39 for proton with incident energy of 20 MeV

    图  4  不同离子径迹直径与能量的关系曲线,刻蚀时间为6 h

    Figure  4.  Relationship of track diameter and ion energy for different kind of particles, the etching time is 6 h

    图  5  刻蚀时间6 h时不同入射能量En的P和T离子径迹的剖面图

    Figure  5.  Projection plot of tracks for P and T ions with different incident energy En, the etching time is 6 h

    图  6  P和T在CR39中的射程(虚线),以及刻蚀6 h后径迹顶端相对CR原始表面的深度(实线)随能量的变化

    Figure  6.  Energy dependence of range (dashed line) and track depth relative to the primary surface of CR39 (solid line) for P (blue line) and T (red line) ions

  • [1] Wilks S C, Langdon A B, Cowan T E, et al. Energetic proton generation in ultra-intense laser-solid interactions[J]. Phys Plasmas, 2000, 8(2): 542-549.
    [2] Mora P. Plasma expansion into a vacuum[J]. Phys Rev Lett, 2003, 90: 185002. doi: 10.1103/PhysRevLett.90.185002
    [3] Park H S, Hurricane O A, Callahan D A, et al. High-adiabat high-foot inertial confinement fusion implosion experiments on the National Ignition Facility[J]. Phys Rev Lett, 2014, 112: 055001. doi: 10.1103/PhysRevLett.112.055001
    [4] 翟鹏济, 唐孝威, 王龙, 等. CR-39核径迹探测器及其在核科学等研究领域中的应用[J]. 物理, 2000, 29(7): 397-400. doi: 10.3321/j.issn:0379-4148.2000.07.004

    Zhai Pengji, Tang Xiaowei, Wang Long, et al. CR-39 plastic nuclear track detector and its application in nuclear science. Physics, 2000, 29(7): 397-400 doi: 10.3321/j.issn:0379-4148.2000.07.004
    [5] 王兴功, 骆亿生, 张红, 等. CR-39固体核径迹探测器用于中子测量化学蚀刻参数的优化[J]. 核技术, 2005, 28(4): 319-323. doi: 10.3321/j.issn:0253-3219.2005.04.016

    Wang Xinggong, Luo Yisheng, Zhang Hong, et al. Optimum condition of chemical etching of CR-39 solid state nuclear track detector for neutron measurement. Nuclear Techniques, 2005, 28(4): 319-323 doi: 10.3321/j.issn:0253-3219.2005.04.016
    [6] Li C K, Petrasso R. Stopping of directed energetic electrons in high-temperature hydrogenic plasmas[J]. Physical Review E, 2004, 70: 067401. doi: 10.1103/PhysRevE.70.067401
    [7] Seguin F H, Fremje J A, Li C K, et al. Spectrometry of charged particles from inertial-confinement-fusion plasmas[J]. Review of Scientific Instruments, 2003, 74(2): 975-995. doi: 10.1063/1.1518141
    [8] Rygg J R, Seguin F H, Li C K, et al. Proton radiography of inertial fusion implosions[J]. Science, 2008, 319(5867): 1223-1225. doi: 10.1126/science.1152640
    [9] 伍波, 董克攻, 吴玉迟, 等. 利用CR39上的径迹鉴别激光加速离子产物[J]. 强激光与粒子束, 2013, 25(2): 381-384. doi: 10.3788/HPLPB20132502.0381

    Wu Bo, Dong Kegong, Wu Yuchi, et al. Identification of ion products produced from laser acceleration experiments using tracks in CR39. High Power Laser and Particle Beams, 2013, 25(2): 381-384 doi: 10.3788/HPLPB20132502.0381
    [10] 李波均, 杨建伦, 彭太平, 等. CR39探测器对5种能量α粒子的响应[J]. 核电子学与探测技术, 2010, 30(9): 1164-1167. doi: 10.3969/j.issn.0258-0934.2010.09.007

    Li Bojun, Yang Jianlun, Peng Taiping, et al. CR39 detector response for alpha irradiation of five energy. Nuclear Electronics& Detection Technology, 2010, 30(9): 1164-1167 doi: 10.3969/j.issn.0258-0934.2010.09.007
    [11] 段晓礁, 谭志新, 兰小飞, 等. 用20~1020 keV单能质子刻度CR-39固体核径迹探测器[J]. 物理学报, 2010, 59(5): 3147-3153. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201005036.htm

    Duan Xiaoqiao, Tan Zhixin, Lan Xiaofei, et al. Calibration of solid state nuclear track detector CR39 with monoenergetic protons. Acta Physica Sinica, 2010, 59(5): 3147-3153 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201005036.htm
    [12] 方美华, 魏志勇, 黄三玻, 等. 纳米尺度上CR-39径迹蚀刻动力学研究[J]. 核科学与工程, 2011, 31(3): 263-269. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXY201103011.htm
    [13] Kodaira S, Yasuda N, Konishi T, et al. Calibration of CR-39 with atomic force microscope for the measurement of short range tracks from proton-induced target fragmentation reactions[J]. Radiation Measurements, 2013, 50: 232-236. doi: 10.1016/j.radmeas.2012.10.001
    [14] Nikezic D, Yu K N. Formation and growth of tracks in nuclear track materials[J]. Materials Science & Engineering: R: Reports, 2004, 46: 51-123.
    [15] Hicks D G. Charged-particle spectroscopy: A new window on inertial confinement fusion[D]. Cambridge: Massachusetts Institute of Technology, 1999: 103-114.
  • 加载中
图(6)
计量
  • 文章访问数:  1028
  • HTML全文浏览量:  229
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-02
  • 修回日期:  2019-04-16
  • 刊出日期:  2019-05-15

目录

    /

    返回文章
    返回