Influence of geomagnetic storms on power system and suppressing measures
-
摘要: 地磁暴是全球范围内地球磁场的剧烈扰动现象, 在电网中产生地磁感应电流(GIC)。电力变压器在GIC的作用下进入半波饱和状态, 其产生的谐波和增加的无功损耗影响电网电压稳定, 造成系统中继电保护装置误动, 随着电网电压等级的提高和电网规模的扩大, 地磁暴可能严重威胁电网安全运行。分析了变压器对GIC入侵后的响应, 以及次生灾害在电力系统中的传播过程, 阐明了磁暴对电力系统的影响机理, 分析了GIC对变压器、无功补偿设备和继电保护装置等设备的影响, 建立了GIC对系统电压稳定性影响的分析框架及基本方法, 最后提出了一种GIC优化治理策略, 与传统治理方法相比具有明显的优越性。Abstract: Geomagnetic storms are violent disturbances of the geomagnetic field around the world, which produce geomagnetic induced currents (GIC) in power system.Power transformer enters the half-wave saturation state under the influence of GIC.The harmonics and reactive power loss produced by transformer affect the voltage stability of power system and cause the maloperation of relay protection devices in power system.With the increase of voltage level and the expansion of power grid scale, geomagnetic storms will seriously threaten the safe operation of power grid.Based on the analysis of the mechanism of magnetic storm disaster and the description of fault propagation and power system response, this paper deeply understands the influence of geomagnetic storm on power system and its electrical equipment.The prevention and control of secondary hazards of GIC is an important subject in the study of geomagnetic storms.This paper summarizes the research framework and ideas of the impact of magnetic storms on the voltage safety of power grid, combs the research results of the optimal control devices for suppressing DC bias of transformers.An optimized treatment of GIC is proposed which has obvious advantages compared with traditional methods.
-
Key words:
- geomagnetically induced currents /
- GIC /
- DC bias /
- voltage stability /
- eliminating device
-
表 1 不同结构变压器的系数值K
Table 1. Coefficient value K of transformers with different structures
K/(Mvar/A) transformer core design 1.18 single phase 0.33 three-phase shell form 0.29 three-phase, three legged, core form 0.66 three-phase, five-legged, core form -
[1] 刘连光, 刘春明, 张冰. 磁暴对我国特高压电网的影响研究[J]. 电网技术. 2009, 33(11): 1-5. doi: 10.13335/j.1000-3673.pst.2009.11.003Liu Lianguang, Liu Chunming, Zhang Bing. Effects of geomagnetic storm on UHV power grids in China. Power System Technology, 2009, 33(11): 1-5 doi: 10.13335/j.1000-3673.pst.2009.11.003 [2] Zanetti L J. Review of North American Electric Reliability Corporation (NERC) interim report: Effects of geomagnetic disturbances on the bulk power system[J]. Space Weather, 2013, 11(6): 335-336. doi: 10.1002/swe.20060 [3] Kappenman G J. Geomagnetic storms and their impact on power systems[J]. IEEE Power Engineering Review, 1996, 16(5): 5. doi: 10.1109/MPER.1996.491910 [4] Trichtchenko L, Boteler D H. Modeling geomagnetically induced currents using geomagnetic indices and data[J]. IEEE Trans Plasma Science, 2004, 32(4): 1459-1467. doi: 10.1109/TPS.2004.830993 [5] Bolduc L, Granger M, Pare G, et al. Development of a DC current-blocking device for transformer neutrals[J]. IEEE Trans Power Delivery, 2005, 20(1): 163-168. doi: 10.1109/TPWRD.2004.835437 [6] Koen J, Gaunt T. Geomagnetically induced currents in the Southern African electricity transmission network[C]//Proceedings of IEEE Bologna Power Tech Conference. 2003: 7. [7] Pinto L M, Szczupak J, Drummond M A, et al. A new threat to power systems security[C]//IEEE/PES Transmission and Distribution Conference and Exposition. 2004: 776-781. [8] Liu Chunming, Liu Lianguang, Pirjola R. Geomagnetically induced currents in the high-voltage power grid in China[J]. IEEE Trans Power Delivery, 2009, 24(4): 2368-2374. doi: 10.1109/TPWRD.2009.2028490 [9] 刘连光, 刘春明, 张冰, 等. 中国广东电网的几次强磁暴影响事件[J]. 地球物理学报, 2008, 51(4): 976-981. doi: 10.3321/j.issn:0001-5733.2008.04.004Liu Lianguang, Liu Chunming, Zhang Bing, et al. Strong magnetic storm's influence on China's Guangdong power grid. Chinese Journal of Geophysics, 2008, 51(4): 976-981 doi: 10.3321/j.issn:0001-5733.2008.04.004 [10] 袁清云. 特高压直流输电技术现状及在我国的应用前景[J]. 电网技术, 2005(14): 1-3. doi: 10.3321/j.issn:1000-3673.2005.14.001Yuan Qingyun. Present state and application prospect of ultra HVDC transmission in China. Power System Technology, 2005(14): 1-3 doi: 10.3321/j.issn:1000-3673.2005.14.001 [11] 李泓志, 崔翔, 刘东升, 等. 直流偏磁对三相电力变压器的影响[J]. 电工技术学报, 2010, 25(5): 88-96. doi: 10.19595/j.cnki.1000-6753.tces.2010.05.015Li Hongzhi, Cui Xiang, Liu Dongsheng, et al. Influence on three-phase power transformer by DC bias excitation. Transactions of China Electrotechnical Society, 2010, 25(5): 88-96 doi: 10.19595/j.cnki.1000-6753.tces.2010.05.015 [12] Albertson V D, Thorson J M, Clayton R E, et al. Solar-induced-currents in power systems: cause and effects[J]. IEEE Trans Power Apparatus and Systems, 1973, PAS-92(2): 471-477. doi: 10.1109/TPAS.1973.293746 [13] Albertson V D, Thorson J M, Miske S A. The effects of geomagnetic storms on electrical power systems[J]. IEEE Trans Power Apparatus and Systems, 1974, 93(4): 1031-1044. [14] Lesher R L, Porter J W, Byerly R T. SUNBURST/spl minus/a network of GIC monitoring systems[J]. IEEE Trans Power Delivery, 1994, 9(1): 128-137. doi: 10.1109/61.277687 [15] Bozoki B, Chano S R, Dvorak L L. The effects of GIC on protective relaying[J]. IEEE Trans Power Delivery, 1996, 11(2): 725-739. doi: 10.1109/61.489329 [16] Albertson V D, Kappenman J G, Mohan N, et al. Load-flow studies in the presence of geomagnetically-induced currents[J]. IEEE Trans Power Apparatus and Systems, 1981, 100(2): 594-607. [17] Overbye T J, Hutchins T R, Shetye K, et al. Integration of geomagnetic disturbance modeling into the power flow: A methodology for large-scale system studies[C]//2012 North American Power Symposium (NAPS). 2012: 1-7. [18] Tigere S, Phaphathisa L, Folly K A, et al. Power system voltage stability in the presence of GIC-like currents[C]//2018 IEEE PES/IAS Power. 2018: 567-572. [19] Demiray T, Beccuti G, Andersson G. Risk assessment of the impact of geomagnetic disturbances on the transmission grid in Switzerland[C]//2013 IEEE Power & Energy Society General Meeting. 2013: 1-5. [20] Piccinelli R, Krausmann E. North Europe power transmission system vulnerability during extreme space weather[J]. Space Weather Space Clim, 2018: A03. [21] Jing C, Franklin D, Mavis S, et al. Geomagnetic disturbance impact study on system reliability at Southern California Edison[C]//2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC). 2016: 1-5. [22] Joo B S, Woo J W, Lee J H. Assessment of the impact of geomagnetic disturbances on korean electric power systems[J]. Energies, 2018, 11(7): 1920. doi: 10.3390/en11071920 [23] Lehtinen M, Pirjola R. Currents produced in earthed conductor networks by geomagnetically-induced electric fields[J]. Annales Geophysicae, 1985, 3(4): 479-484. [24] Horton R, Boteler H D, Pirjola R, et al. A test case for the calculation of geomagnetically induced currents[J]. IEEE Trans Power Delivery, 2012, 27(4): 2368-2373. doi: 10.1109/TPWRD.2012.2206407 [25] 郑宽, 刘连光, David H, et al. 多电压等级电网的GIC-Benchmark建模方法[J]. 中国电机工程学报, 2013, 33(16): 179-186. doi: 10.13334/j.0258-8013.pcsee.2013.16.024Zheng Kuan, Liu Lianguang, David H, et al. Modelling geomagnetically induced currents in multiple voltage levels of a power system illustrated using the GIC-benchmark case. Proceedings of the CSEE, 2013, 33(16): 179-186 doi: 10.13334/j.0258-8013.pcsee.2013.16.024 [26] 刘连光, 郭世晓, 魏恺, 等. 基于全节点模型的三华电网地磁感应电流计算[J]. 电网技术, 2014, 38(7): 1946-1952. doi: 10.13335/j.1000-3673.pst.2014.07.035Liu Lianguang, Guo Shixiao, Wei Kai, et al. Calculation of geomagnetically induced currents in interconnected North China-Central China-East China power grid based on full-node GIC model. Power System Technology, 2014, 38(7): 1946-1952 doi: 10.13335/j.1000-3673.pst.2014.07.035 [27] Dong X, Liu Yilu, Kappenman J G. Comparative analysis of exciting current harmonics and reactive power consumption from GIC saturated transformers[C]//2001 IEEE Power Engineering Society Winter Meeting. 2001, 1: 318-322. [28] Jarjis J, Galiana F D. Quantitative analysis of steady state stability in power networks[J]. IEEE Trans Power Apparatus and Systems, 1981, 100: 318-326. [29] Galiana F D. Analytic properties of the load flow problem[J]. Circuits System Special Session on Power System, 1977: 802-806. [30] Yu Yixin, Huang Chunhua, Feng Fei. A study on reactive power steady-state security regions[J]. Electric Machine and Power Systems, 1989, 17: 155-166. doi: 10.1080/07313568908909422 [31] Kappenman J G. GIC mitigation: a neutral blocking/bypass device to prevent the flow of GIC in power systems[J]. IEEE Trans Power Delivery, 1991, 6(3): 1271-1281. doi: 10.1109/61.85876 [32] 张金平, 张辉, 熊敏, 等. 基于串联电容法的变压器中性点直流电流抑制装置[J]. 电网技术, 2009, 33(20): 147-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS200920028.htmZhang Jinping, Zhang Hui, Xiong Min, et al. Application of a series capacitor based transformer neutral DC current blocking device. Power System Technology, 2009, 33(20): 147-151 https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS200920028.htm [33] 刘春明, 黄彩臣, 林晨翔. 抑制变压器地磁感应电流的电容隔直装置安装位置优化[J]. 电力系统自动化, 2016, 40(16): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201616020.htmLiu Chunming, Huang Caichen, Lin Chenxiang. Installation position optimization of capacitor DC blocking devices for suppressing geomagnetically induced currents in transformers. Automation of Electric Power System, 2016, 40(16): 132-137 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201616020.htm [34] 刘春明, 林俊岑, 王璇, 等. 抑制电网地磁感应电流的电容电阻优化布置方法[J]. 电网技术, 2018, 42(5): 1681-1686. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201805042.htmLiu Chunming, Lin Juncen, Wang Xuan, et al. An optimal layout method of capacitances and resistances for suppressing geomagnetically induced currents in power grid. Power System Technology, 2018, 42(05): 1681-1686 https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201805042.htm