留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华北大地涡旋电流现象机理及对管道管地电位影响

梁志珊 肖霄 罗雄麟 左信 毕武喜 蓝卫

梁志珊, 肖霄, 罗雄麟, 等. 华北大地涡旋电流现象机理及对管道管地电位影响[J]. 强激光与粒子束, 2019, 31: 070013. doi: 10.11884/HPLPB201931.190120
引用本文: 梁志珊, 肖霄, 罗雄麟, 等. 华北大地涡旋电流现象机理及对管道管地电位影响[J]. 强激光与粒子束, 2019, 31: 070013. doi: 10.11884/HPLPB201931.190120
Liang Zhishan, Xiao Xiao, Luo Xionglin, et al. Geodetic interface algorithm for evaluating geomagnetic storms in pipelines[J]. High Power Laser and Particle Beams, 2019, 31: 070013. doi: 10.11884/HPLPB201931.190120
Citation: Liang Zhishan, Xiao Xiao, Luo Xionglin, et al. Geodetic interface algorithm for evaluating geomagnetic storms in pipelines[J]. High Power Laser and Particle Beams, 2019, 31: 070013. doi: 10.11884/HPLPB201931.190120

华北大地涡旋电流现象机理及对管道管地电位影响

doi: 10.11884/HPLPB201931.190120
基金项目: 

国家重点研发计划项目 2016YFC0800100

详细信息
    作者简介:

    梁志珊(1958—), 男, 博士, 教授, 从事地磁暴对埋地油气管道设备影响研究, 1972601365@qq.com

  • 中图分类号: TE832

Geodetic interface algorithm for evaluating geomagnetic storms in pipelines

  • 摘要: 一维分块大地周围的特定电性结构能够在该分块大地中产生涡旋电流。通过反演等效电流源并根据实际地形构造大地电性模型, 分析了涡流处的等效电流和电性结构对其特性的影响, 揭示了该特定区域中产生涡流并使得涡流移动的机理; 对铺设在该区域中的输油管道给出了管地电位(PSP) 的分布特征。计算得到的管道PSP与实际监测得到的管道PSP分布规律的一致性表明了涡旋电流能够加重地磁扰动对管道的影响。
  • 图  1  等效电流源方向示意

    Figure  1.  Direction indication of equivalent current source

    图  2  确定等效电流方向

    Figure  2.  Determination of equivalent current direction

    图  3  华北大地电导率模型

    Figure  3.  Geoelectric conductivity model in North China

    图  4  帕金森矢量推测涡流结果

    Figure  4.  Parkinson vector estimation of eddy current

    图  5  仿真结果

    Figure  5.  Simulation result

    图  6  涡旋电流按频率移动图示

    Figure  6.  Eddy current moving by frequency

    图  7  涡旋电流按频率移动图示

    Figure  7.  Eddy current changes with direction

    图  8  拟合地磁

    Figure  8.  Reconstruction of geomagnetism

    图  9  PSP随管线分布

    Figure  9.  Distribution of pipe-soil potential (PSP)

    图  10  兖州站和平邑站PSP和GIC随时间分布图

    Figure  10.  Time distribution of PSP and GIC at Pingyi station and Yanzhou station

    图  11  兖州站和平邑站的现场监测结果

    Figure  11.  On-site monitoring data of Yanzhou station and Pingyi station

    图  12  电流涡旋位置

    Figure  12.  Location of eddy current

  • [1] Pirjola R. Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems[J]. Surveys in Geophysics, 2002, 23(1): 71-90. doi: 10.1023/A:1014816009303
    [2] Tay H C, Swift G W. On the problem of transformer overheating due to geomagnetically induced currents[J]. IEEE Power Engineering Review, 1985, 5(1): 48-49.
    [3] Zheng K, Pirjola R J, Boteler D H, et al. Geoelectric fields due to small-scale and large-scale source currents[J]. IEEE Trans Power Delivery, 2013, 28(1): 442-449. doi: 10.1109/TPWRD.2012.2226248
    [4] Zheng K, Trichtchenko L, Pirjola R, et al. Effects of geophysical parameters on GIC illustrated by benchmark network modeling[J]. IEEE Trans Power Delivery, 2013, 28(2): 1183-1191. doi: 10.1109/TPWRD.2013.2249119
    [5] 张蓬鹤, 何俊佳, 黄伟超, 等. 基于复镜像法的接地网地表电位分布计算[C]//中国电机工程学会高电压专业委员会2009年学术年会. 2009.

    Zhang Penghe, He Junjia, Huang Weichao, et al. Calculation of grounding grid surface potential distribution based on complex mirror method//2009 Annual Meeting of High Voltage Professional Committee of CSEE. 2009
    [6] Weaver J T. Electromagnetic induction in thin sheet conductivity anomalies at the surface of the earth[J]. Proceedings of the IEEE, 1979, 67(7): 1044-1050. doi: 10.1109/PROC.1979.11387
    [7] Gilbert J L. Modeling the effect of the ocean-land interface on induced electric fields during geomagnetic storms[J]. Space Weather-the International Journal of Research & Applications, 2005, 3(4): 211.
    [8] 魏文博, 谭捍东, 金胜, 等. 华北中部岩石圈电性结构—应县-商河剖面大地电磁测深研究[J]. 地球科学, 2002, 27(5): 645-650. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205027.htm

    Wei Wenbo, Tan Handong, Jin Sheng, et al. Conductivity structure of lithosphere in Central North China: Magnetotelluric study of Yingxian-Shanghe profile. Earth Sicence, 2002, 27(5): 645-650 https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205027.htm
    [9] 徐光晶, 汤吉, 黄清华, 等. 华北地区上地幔及过渡带电性结构研究[J]. 地球物理学报, 2015, 58(2): 566-575. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201502019.htm

    Xu Guangjing, Tang Ji, Huang Qinghua, et al. Study on the conductivity structure of the upper mantle and transition zone beneath North China. Chinese Journal of Geophysics, 2015, 58(2): 566-575 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201502019.htm
    [10] 詹艳, 赵国泽, 王立凤, 等. 河北石家庄地区深部结构大地电磁探测[J]. 地震地质, 2011, 33(4): 913-927. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201104017.htm

    Zhan Yan, Zhao Guoze, Wang Lifeng, et al. Deep structure in Shijiazhuang and the vicinity by magnetotellurics, seismology and geology, 2011, 33(4): 913-927 https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201104017.htm
    [11] Püthe C, Kuvshinov A, Khan A, et al. A new model of Earth's radial conductivity structure derived from over 10 yr of satellite and observatory magnetic data[J]. Geophysical Journal International, 2016, 203(3): 1864-1872.
    [12] 喻克智. 山西地质构造及地震活动特征[J]. 山西地震, 1977(1): 48-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ197701008.htm

    Yu Kezhi. Geological tectonics and seismic activity characteristics of Shanxi province. Earthquake Research in Shanxi, 1977(1): 48-55 https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ197701008.htm
    [13] 龚绍京, 刘双庆, 梁明剑. 中国大陆地磁帕金森矢量特征及其与主要构造关系[J]. 地震学报, 2017(1): 47-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201701005.htm

    Gong shaojing, Liu shuangqing, Liang Mingjian. Characteristics of geomagnetic Parkinson vector in Chinese mainland and their tectonic implication. Acta Seismologica Sinice, 2017(1) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201701005.htm
    [14] 章鑫. 中国大陆大地电流时空分布及涡旋现象研究[D]. 兰州: 中国地震局兰州地震研究所, 2016.

    Zhangxin. The study of time and spatial distributed of tulluric currents and the vortex currents in mainland China. Lanzhou: Lanzhou Institute of Seismology, China Earthquake Administration, 2016
    [15] 梁志珊. 一种埋地油气管道受地磁暴影响的GIC和PSP的计算方法: CN105260504B[P]. 2018-02-02.

    Liang Zhishan. A calculation method of GIC and PSP for buried oil and gas pipeline affected by geomagnetic storm. CN105260504B. 2018-02-02
  • 加载中
图(12)
计量
  • 文章访问数:  1600
  • HTML全文浏览量:  384
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-19
  • 修回日期:  2019-06-03
  • 刊出日期:  2019-07-15

目录

    /

    返回文章
    返回