Infrared target tracking based on selective convolution features
-
摘要: 对红外图像中的目标跟踪时,复杂的背景信息以及目标像素数较少等因素增加了红外目标跟踪难度,目标区域的图像块缺乏特征信息使得普通跟踪算法较易产生跟踪偏移问题。为解决此问题,提出了一种基于粒子滤波框架下的卷积特征选择的红外目标跟踪算法。首先,在初始目标块上提取少量图像块作为滤波器,进而获得表征能力更强的卷积特征。然后,采用在线提升算法对该特征进行选择,增加跟踪算法的精度和执行效率。最后,将贝叶斯分类器的响应作为粒子权值估计出目标状态。实验结果验证了所提算法的跟踪性能优于其他几种传统算法。Abstract: Infrared target tracking is heavily influenced by illumination variation, small size and complex background, and the lack of target information makes the algorithm lose targets easily. Therefore, an algorithm based on convolution features and feature selection method is presented in this paper to track IR targets. First, several filters in target patches of the first frame are used to obtain strong features. Then, the boosting method is utilized to train the features with redundant information, thus, the algorithm performance of accuracy and execution efficiency can be improved. Finally, particle weights are represented by the response of the native Bayes classifier. Experimental results show that the presented algorithm obtains good performance.
-
Key words:
- infrared image /
- target tracking /
- dim-small target /
- convolutional feature /
- boosting /
- particle filter
-
表 1 六组红外序列描述
Table 1. Description of six IR sequences
sequence frame image size target size description Girl-Griffith 150 640×512 40×110 people, around the tree and stone People-Griffith 200 640×512 35×75 people, in front of the jungle Car-Griffith 147 640×512 40×35 car, on the road Plane-Griffith 239 640×512 15×8 plane, influenced by the cloud Plane1 86 256×256 2×2~4×4 plane, bright cloud Plane2 120 256×256 3×3~5×5 plane, strong edge 表 2 跟踪性能对比
Table 2. Comparison of all tracking algorithms
CLE average SR FPS sequence Girl-Griffith People-Griffith Car-Griffith Plane-Griffith Plane1 Plane2 CT 0.06 0.86 0.40 0.39 1.00 0.54 0.54 40 L1 0.59 0.20 0.05 0.96 0.65 0.58 0.51 12 TMT 0.33 0.38 0.54 0.95 0.77 0.08 0.51 24 STC 0.23 0.99 0.71 0.32 0.10 0.34 0.45 100 MSPF 0.47 0.04 0.76 0.84 0.15 0.65 0.49 20 CNB 1.00 0.97 1.00 0.97 1.00 0.95 0.98 19 -
[1] Kim S, Lee J. Scale invariant small target detection by optimizing signal-to-clutter ratio in heterogeneous background for infrared search and track[J]. Pattern Recognition, 2012, 45(1): 393-406. doi: 10.1016/j.patcog.2011.06.009 [2] Wang Xin, Ning Chen, Xu Lizhong. Spatiotemporal difference-of-Gaussians filters for robust infrared small target tracking in various complex scenes[J]. Applied Optics, 2015, 54(7): 1573-1586. doi: 10.1364/AO.54.001573 [3] 张素, 安博文, 潘胜达. 基于时空非局部相似性的海上红外目标检测[J]. 光子学报, 2018, 47: 1110001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201811031.htmZhang Su, An Bowen, Pan Shengda. Infrared dim target detection based on temporal-spatial non-local similarity. Acta Photonica Sinica, 2018, 47: 1110001 https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201811031.htm [4] 董维科, 张建奇, 刘德连, 等. 基于运动方向估计的管道滤波算法[J]. 光子学报, 2013, 42(4): 471-474. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201304018.htmDong Weike, Zhang Jianqi, Liu Delian, et al. Pipeline filter algorithm based on movement direction estimation. Acta Photonica Sinica, 2013, 42(4): 471-474 https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201304018.htm [5] 程建, 周越, 蔡念, 等. 基于粒子滤波的红外目标跟踪[J]. 红外与毫米波学报, 2006, 25(2): 113-117. doi: 10.3321/j.issn:1001-9014.2006.02.008Chen Jian, Zhou Yue, Cai Nian, et al. Infrared object tracking based on particle filter. Journal of Infrared and Millimeter Waves, 2006, 25(2): 113-117 doi: 10.3321/j.issn:1001-9014.2006.02.008 [6] He Yujie, Li Min, Zhang Jinli, et al. Infrared target tracking via weighted correlation filter[J]. Infrared Physics and Technology, 2015, 73: 103-114. doi: 10.1016/j.infrared.2015.09.010 [7] 赵东, 周慧鑫, 于君娜, 等. 复杂天空背景下的红外弱小目标跟踪[J]. 强激光与粒子束, 2018, 30: 061002. doi: 10.11884/HPLPB201830.170511Zhao Dong, Zhou Huixin, Yu Junna, et al. Tracking of infrared dim small target in complex sky background. High Power Laser and Particle Beams, 2018, 30: 061002 doi: 10.11884/HPLPB201830.170511 [8] 王晓卫, 王旭东, 贺明. 基于直方图比的背景加权的Mean Shift目标跟踪算法[J]. 强激光与粒子束, 2016, 28: 051001. doi: 10.11884/HPLPB201628.051001Wang Xiaowei, Wang Xudong, He Ming. Target tracking algorithm based on Mean Shift and histogram ratio background weighted. High Power Laser and Particle Beams, 2016, 28: 051001 doi: 10.11884/HPLPB201628.051001 [9] Zhang Kaihua, Zhang Lei, Yang M H. Fast compressive tracking[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002-2015. doi: 10.1109/TPAMI.2014.2315808 [10] Babenko B, Yang M, Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632. doi: 10.1109/TPAMI.2010.226 [11] Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596. doi: 10.1109/TPAMI.2014.2345390 [12] Qiao Huang, Yang Jie. A multistage target tracker in IR image sequences[J]. Infrared Physics and Technology, 2014, 65: 122-128. doi: 10.1016/j.infrared.2014.03.005 [13] Li Ying, Li Pengcheng, Shen Qiang. Real-time infrared target tracking based on l1 minimization and compressive features[J]. Applied Optics, 2014, 53(28): 6518-6526. doi: 10.1364/AO.53.006518 [14] Wang Li, Liu Ting, Wang Gang, et al. Video tracking using learned hierarchical features[J]. IEEE Trans Image Processing, 2015, 24(4): 1424-1435. doi: 10.1109/TIP.2015.2403231 [15] Zhang Kaihua, Liu Qingshan, Wu Yi, et al. Robust visual tracking via convolutional networks without training[J]. IEEE Trans Image Processing, 2016, 25(4): 1779-1792. [16] 陈皓, 马彩文, 陈岳承, 等. 基于灰度统计的快速模板匹配算法[J]. 光子学报, 2009, 38(6): 1586-1589. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200906065.htmChen Hao, Ma Caiwen, Chen Yuecheng, et al. Fast template matching arithmetic based on image gray statistic. Acta Photonica Sinica, 2009, 38(6): 1586-1589 https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200906065.htm