留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固态Marx发生器的过流保护研究

饶俊峰 曾彤 李孜 姜松

饶俊峰, 曾彤, 李孜, 等. 固态Marx发生器的过流保护研究[J]. 强激光与粒子束, 2019, 31: 125001. doi: 10.11884/HPLPB201931.190138
引用本文: 饶俊峰, 曾彤, 李孜, 等. 固态Marx发生器的过流保护研究[J]. 强激光与粒子束, 2019, 31: 125001. doi: 10.11884/HPLPB201931.190138
Rao Junfeng, Zeng Tong, Li Zi, et al. Study on over-current protection of solid-state Marx generators[J]. High Power Laser and Particle Beams, 2019, 31: 125001. doi: 10.11884/HPLPB201931.190138
Citation: Rao Junfeng, Zeng Tong, Li Zi, et al. Study on over-current protection of solid-state Marx generators[J]. High Power Laser and Particle Beams, 2019, 31: 125001. doi: 10.11884/HPLPB201931.190138

固态Marx发生器的过流保护研究

doi: 10.11884/HPLPB201931.190138
基金项目: 国家自然科学基金青年基金项目(51707122)
详细信息
    作者简介:

    饶俊峰(1985—),男,博士,副教授,主要从事全固态高压脉冲发生器和高压放电低温等离子体应用的研究工作;jfrao@usst.edu.cn

    通讯作者:

    曾 彤(1994—),男,硕士研究生,研究方向为脉冲功率技术;jyzengtong@163.com

  • 中图分类号: TM832

Study on over-current protection of solid-state Marx generators

  • 摘要: 具有快速上升沿、低开关损耗的SiC MOSFET已逐渐在固态高压脉冲电源中使用。针对固态Marx发生器中的常见短路故障,分析了SiC MOSFET的过流损坏机制,提出了一种新型的带过流保护的驱动系统。该驱动系统不仅实现了宽驱动信号同步输出,同时能够在整个SiC MOSFET导通期间提供过电流钳制效果。驱动系统中的保护电路利用SiC MOSFET门极电压与漏极电流的关系,通过单个采样电阻和一对反向串联的稳压管将SiC MOSFET门极电压拉低的方式来限制过电流。实验结果表明:当开关管的导通电流较小时,虽然门极电压会有轻微下降,但是SiC MOSFET的导通阻抗仍然很低;而在过电流故障发生时,门极电压会被快速拉低,开关管的导通阻抗急剧上升,从而迅速将导通电流钳制在安全范围内。
  • 图  1  基于Marx结构脉冲电源的主电路

    Figure  1.  Main circuit diagram of pulse generator based on Marx structure

    图  2  带过电流保护的驱动系统原理图

    Figure  2.  Schematic diagram of drive system with over-current protection

    图  3  开通/关断信号与驱动1的脉宽与相位关系

    Figure  3.  Relationship of phase and pulse width between driver1 and turning-on/turning-off signals

    图  4  测试电路原理图

    Figure  4.  Schematic diagram of test circuit

    图  5  无稳压管时开通期间的实验波形(1)

    Figure  5.  Experimental waveform in turn-on period without zener diode (1)

    图  6  无稳压管时开通期间的实验波形(2)

    Figure  6.  Experimental waveform in turn-on period without zener diode (2)

    图  7  无稳压管时维持期间的实验波形

    Figure  7.  Experimental waveform in hold-on period without zener diodes

    图  8  有稳压管时维持期间的实验波形

    Figure  8.  Experimental waveform in hold-on period with zener diodes

    图  9  基于SiC MOSFET的Marx发生器的输出波形

    Figure  9.  Output waveform of Marx generator based on SiC MOSFET

  • [1] Shao Tao, Huang Weimin, Li Wenfeng, et al. A cascaded microsecond-pulse generator for discharge applications[J]. IEEE Trans Plasma Science, 2014, 42(6): 1721-1728 doi: 10.1109/TPS.2014.2320999
    [2] Ahmed G, Shesha H J. Effect of electric pulse parameters on releasing metallic particles from stainless steel electrodes during PEF processing of milk[J]. IEEE Trans Industry Applications, 2014, 50(2): 1402-1409 doi: 10.1109/TIA.2013.2278424
    [3] 姚陈果, 郭飞, 董守龙, 等. 纳秒脉冲处理A375细胞裸鼠皮下移植瘤的疗效评估[J]. 高电压技术, 2013, 39(01):117-121. (Yao Chenguo, Guo Fei, Dong Shoulong, et al. Evaluation of subcutaneous xenograft tumor of A375 cells treated with nanosecond pulse. High Voltage Engineering, 2013, 39(01): 117-121 doi: 10.3969/j.issn.1003-6520.2013.01.017
    [4] Bortis D, Biela J, Kolar J W. Transient behavior of solid-state modulators with matrix transformers[J]. IEEE Trans Plasma Science, 2010, 38(10): 2785-2792 doi: 10.1109/TPS.2010.2065243
    [5] Ahn S H, Ryoo H J, Gong J W, et al. Robust design of solid-state pulsed power modulator based on modular stacking structure[J]. IEEE Trans Power Electronics, 2015, 30(5): 2570-2577 doi: 10.1109/TPEL.2014.2352651
    [6] 饶俊峰, 姜松, 李孜. 基于Marx和磁开关的方波脉冲电源的研制[J]. 强激光与粒子束, 2016, 28:055005. (Rao Junfeng, Jiang Song, Li Zi. Investigation of square wave pulse power supply based on Marx and magnetic switch. High Power Laser and Particle Beams, 2016, 28: 055005
    [7] Jiang Song, Rao Junfeng, Wu Zhanghang, et al. Effects of coaxial dielectric barrier discharge system on water treatment by water stream well mixed with air[J]. IEEE Trans Dielectrics and Electrical Insulation, 2016, 23(6): 3328-3335 doi: 10.1109/TDEI.2016.005950
    [8] 应雪正, 王剑平, 叶尊忠. 国内外高压脉冲电场食品杀菌关键技术概况[J]. 食品科技, 2006(3):4-7. (Ying Xuezheng, Wang Jiangping, Ye Zunzhong. Overview of key technologies for food sterilization by high voltage pulsed electric field at home and abroad. Food Science and Technology, 2006(3): 4-7 doi: 10.3969/j.issn.1005-9989.2006.03.002
    [9] Yu C H, Jang S R, Kim H S, et al. Gate driving circuit with active pull-down function for a solid-state pulsed power modulator[J]. IEEE Trans Power Electronics, 2018, 33(1): 240-247 doi: 10.1109/TPEL.2017.2673000
    [10] 饶俊峰, 皮特尔, 李孜, 等. 带截尾开关的高频纳秒脉冲功率源设计[J]. 高电压技术, 2017, 43(6):1800-1807. (Rao Junfeng, Teer P, Li Zi, et al. Design of high frequency nanosecond pulse power source with truncated switch. High Voltage Engineering, 2017, 43(6): 1800-1807
    [11] Wang Jun, Shen Zhiyu, Burgos R, et al. Design of a high-bandwidth Rogowski current sensor for gate-drive shortcircuit protection of 1. 7 kV SiC MOSFET power modules[C]//IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA). 2015: 104-107.
    [12] Horiguchi T, Kinouchi S I, Nakayama Y, et al. A fast short-circuit protection method using gate charge characteristics of SiC MOSFETs[C]//IEEE Energy Conversion Congress and Exposition (ECCE). 2015: 4759-4764.
    [13] Rice J, Mookken J. SiC MOSFET gate drive design considerations[C]//IEEE International Workshop on Integrated Power Packaging (IWIPP). 2015: 24-27.
    [14] Awwad A E, Dieckerhoff S. Short-circuit evaluation and overcurrent protection for SiC power MOSFETs[C]//17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe). 2015: 1-9.
    [15] Khanna V K. Insulated gate bipolar transistor IGBT theory and design[M]. New Jersey: Wiley-IEEE Press, 2003: 56-70.
    [16] Ammous A, Allard B, Morel H. Transient temperature measurements and modeling of IGBT's undershort circuit[J]. IEEE Trans Power Electronics, 2007, 13(1): 12-25
    [17] Mohsenzadeh S, Zarghani M, Kaboli S. A series stacked IGBT switch with robustness against short circuit fault for pulsed power applications[J]. IEEE Trans Power Electronics, 2018, 33(5): 3779-3790 doi: 10.1109/TPEL.2017.2712705
    [18] Rodríguez M A, Claudio A, Theilliol D, et al. A new fault detection technique for IGBT based on gate voltage monitoring[C]//IEEE Power Electronics Specialists Conference. 2007: 1001-1005.
    [19] Khargekar A K, Pavana Kumar P. A novel scheme for protection of power semiconductor devices against short circuit faults[J]. IEEE Trans Industrial Electronics, 1994, 41(3): 344-351 doi: 10.1109/41.293906
    [20] Zhou Ziwei, Li Zi, Rao Junfeng, et al. A high-performance drive circuit for all solid-state Marx generator[J]. IEEE Trans Plasma Science, 2016, 44(11): 2779-2784 doi: 10.1109/TPS.2016.2577704
    [21] 饶俊峰, 李成建, 李孜, 等. 全固态高重频高压脉冲电源[J]. 强激光与粒子束, 2019, 31:035001. (Rao Junfeng, Li Chengjian, Li Zi, et al. All solid-state high frequency and high voltage pulse power supply. High Power Laser and Particle Beams, 2019, 31: 035001
  • 加载中
图(9)
计量
  • 文章访问数:  1360
  • HTML全文浏览量:  592
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-29
  • 修回日期:  2019-09-04
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回