留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

架空及埋地多导体线缆对HEMP辐照的瞬态响应

杜子韦华 谢彦召

杜子韦华, 谢彦召. 架空及埋地多导体线缆对HEMP辐照的瞬态响应[J]. 强激光与粒子束, 2019, 31: 070003. doi: 10.11884/HPLPB201931.190142
引用本文: 杜子韦华, 谢彦召. 架空及埋地多导体线缆对HEMP辐照的瞬态响应[J]. 强激光与粒子束, 2019, 31: 070003. doi: 10.11884/HPLPB201931.190142
Du Ziweihua, Xie Yanzhao. Transient response of overhead and buried multiconductor lines to HEMP[J]. High Power Laser and Particle Beams, 2019, 31: 070003. doi: 10.11884/HPLPB201931.190142
Citation: Du Ziweihua, Xie Yanzhao. Transient response of overhead and buried multiconductor lines to HEMP[J]. High Power Laser and Particle Beams, 2019, 31: 070003. doi: 10.11884/HPLPB201931.190142

架空及埋地多导体线缆对HEMP辐照的瞬态响应

doi: 10.11884/HPLPB201931.190142
基金项目: 

西安交通大学电力设备电气绝缘国家重点实验室基金项目 EIPE19114

详细信息
    作者简介:

    杜子韦华(1992-), 女,博士研究生,从事电磁脉冲效应研究;dududzw@126.com

    通讯作者:

    谢彦召(1973-),男,博士,教授,从事电磁脉冲研究;yzxie@xjtu.edu.cn

  • 中图分类号: O441.4

Transient response of overhead and buried multiconductor lines to HEMP

  • 摘要: 针对瞬态电磁场辐照多导体电缆问题,首先介绍了一种用于计算架空及埋地线缆瞬态响应的高效时域宏模型。该模型基于传输线理论,利用广义特征线法和SPICE求解器中集成的模拟行为建模库,在时域内实现建模过程中涉及的频率相关参数和卷积计算。该方法适用性广泛,可同时用于架空及埋地线缆的场线耦合建模仿真;与现有时域有限差分法相比,不需要对时间和空间进行离散,以及对频率相关参数进行矢量匹配或数值逆傅里叶变换,因此可简化建模步骤,提高建模及仿真计算的效率;该宏模型计算效率不受线缆长度限制,适用于研究多导体长距离线缆。其次,在时域和频域分别研究了高空电磁脉冲(HEMP)的环境及特点。最后,利用算例验证了所提宏模型计算架空及埋地线缆响应的有效性,并利用该方法分别研究了架空地线对三相输电线路瞬态响应的影响以及埋地电力电缆金属护套在端接线性及非线性保护器件时对HEMP的瞬态响应。结果表明,宏模型法可在时域内高效地计算入射场耦合架空输电线及埋地电力电缆的瞬态响应,特别是对于带有非线性器件的长多导体线缆。
  • 图  1  外场辐照架空和埋地多导体线缆示意图

    Figure  1.  Geometric configuration for external field coupling to overhead and buried transmission lines

    图  2  多导体埋地电缆等效电路示意图

    Figure  2.  Equivalent circuit of n-conductor underground cables

    图  3  不同土壤电导率和深度处透射电场时域波形

    Figure  3.  Time-domain waveform of transmitted electric field for different ground conductivities and depths

    图  4  不同土壤电导率对应的透射电场幅度谱和归一化累积能流谱

    Figure  4.  Amplitude frequency spectrum and cumulative amount of energy fluence of transmitted electric field for different ground conductivities

    图  5  不同距地面深度对应透射电场的幅度谱和归一化累积能流谱

    Figure  5.  Amplitude frequency spectrum and cumulative amount of energy fluence of transmitted electric field for different depths

    图  6  外场辐照架空线示意图

    Figure  6.  Geometry of transient plane wave coupling to overhead transmission lines

    图  7  负载R1R2R3上感应电压比较

    Figure  7.  Comparing results of induced voltages at the terminal ends obtained via macromodel and BLT in Ref[15]

    图  8  三相输电线和两条地线配置图

    Figure  8.  Configuration of three phase lines and two ground wires

    图  9  外场辐照750 kV三相单回交流输电线路示意图

    Figure  9.  Geometry of plane wave coupling to 750 kV three-phase single-back overhead power lines

    图  10  六分裂导线示意图

    Figure  10.  Geometry of 6-bundle-subconductor transmission line

    图  11  三相感应电压

    Figure  11.  Induced voltages on three phases

    图  12  外场辐照端接接地电阻的单根埋地绝缘电缆示意图

    Figure  12.  Geometry of transient plane wave coupling to a buried insulated cable loaded with grounding resistances

    图  13  不同土壤电导率对应的电缆末端瞬态感应电流比较

    Figure  13.  Comparison of transient induced currents at the far terminal grounding resistive for different ground conductivity

    图  14  三相埋地单芯电缆一端互联经护层过电压保护器接地示意图

    Figure  14.  Configuration of three-phase buried cables connected with sheath protector

    图  15  护套保护器BHQ-8/600的伏安特性

    Figure  15.  V-I characteristic of sheath protector BHQ-8/600

    图  16  电缆金属护层末端感应电压

    Figure  16.  Induced voltages at the end of metallic sheath

  • [1] Petrache E, Rachidi F, Paolone M, et al. Lightning induced disturbances in buried cables—Part I: Theory[J]. IEEE Trans Electromagnetic Compatibility, 2005, 47(3): 498-508. doi: 10.1109/TEMC.2005.853161
    [2] Theethayi N, Thottappillil R, Paolone M, et al. External impedance and admittance of buried horizontal wires for transient studies using transmission line analysis[J]. IEEE Trans Dielectrics & Electrical Insulation, 2007, 14(3): 751-761.
    [3] 王川川, 朱长青, 周星, 等. 有限长度埋地多导体电缆对外界电磁场响应特性分析[J]. 高电压技术, 2012, 38(11): 2836-2842. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201211009.htm

    Wang Chuanchuan, Zhu Changqing, Zhou Xing, et al. Response analysis on buried multiconductor cable with finite length to external electromagnetic field. High Voltage Engineering, 2012, 38(11): 2836-2842 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201211009.htm
    [4] 周星, 王川川, 朱长青, 等. 外场辐照下埋地电缆瞬态响应规律研究[J]. 高压电器, 2013(12): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ201312002.htm

    Zhou Xing, Wang Chuanchuan, Zhu Changqing, et al. Transient induction response law of buried cable excited by external electromagnetic field. High Voltage Apparatus, 2013, 49(12): 7-12 https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ201312002.htm
    [5] Xu F, Liu C, Hong W, et al. Fast and accurate transient analysis of buried wires and its applications[J]. IEEE Trans Electromagnetic Compatibility, 2014, 56(1): 188-199. doi: 10.1109/TEMC.2013.2272041
    [6] 孙蓓云, 崔志同, 周辉, 等. 埋地电缆高空电磁脉冲耦合响应[J]. 现代应用物理, 2014, 5(4): 269-274. doi: 10.3969/j.issn.2095-6223.2014.04.004

    Sun Beiyun, Cui Zhitong, Zhou Hui, et al. Coupling effects of HEMP on buried cables. Modern Applied Physics, 2014, 5(4): 269-274 doi: 10.3969/j.issn.2095-6223.2014.04.004
    [7] 刘青, 谢彦召. 高空电磁脉冲作用下埋地电缆的瞬态响应规律[J]. 高电压技术, 2017, 43(9): 3014-3020. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201709032.htm

    Liu Qing, Xie Yanzhao. Transient response law of buried cable to high-altitude electromagnetic pulse. High Voltage Engineering, 2017, 43(9): 3014-3020 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201709032.htm
    [8] Guo J, Xie Y, Qiu A. Calculation of lightning induced voltages on overhead lines using an analytical fitting representation of electric fields[J]. IEEE Trans Electromagnetic Compatibility, 2016: 1-8.
    [9] Liu X, Cui X, Qi L. Calculation of lightning-induced overvoltages on overhead lines based on DEPACT macromodel using circuit simulation software[J]. IEEE Trans Electromagnetic Compatibility, 2012, 54(4): 837-849. doi: 10.1109/TEMC.2011.2175230
    [10] Paul C R. Analysis of multiconductor transmission lines[M]. NewYork: Wiley, 1994.
    [11] Du Z, Xie Y Z, Canavero F G. A Spice-compatible macromodel for field coupling to multiconductor transmission lines based on the analog behavioral modeling[J]. IEEE Trans Electromagnetic Compatibility, 2018: 1-7.
    [12] Papadopoulos T A, Tsiamitros D A, Papagiannis G K. Impedances and admittances of underground cables for the homogeneous earth case[J]. IEEE Trans Power Delivery, 2010, 25(2): 961-969.
    [13] Papagiannis G K, Tsiamitros D A, Labridis D P, et al. Direct numerical evaluation of earth return path impedances of underground cables[J]. IEE Proceedings-Generation, Transmission and Distribution, 2005, 152(3): 321.
    [14] 谢彦召, 王赞基, 王群书, 等. 高空核爆电磁脉冲波形标准及特征分析[J]. 强激光与粒子束, 2003, 15(8): 781-787. http://www.hplpb.com.cn/article/id/30

    Xie Yanzhao, Wang Zanji, Wang Qunshu, et al. High altitude nuclear electromagnetic pulse waveform standards: a review. High Power Laser and Particle Beams, 2003, 15(8): 781-787 http://www.hplpb.com.cn/article/id/30
    [15] Xie H, Yong L, Qiao H, et al. Empirical formula of effective coupling length for transmission lines illuminated by E1 HEMP[J]. IEEE Trans Electromagnetic Compatibility, 2016, 58(2): 581-587.
    [16] Tesche F M, Ianoz M V, Karlsson T. EMC analysis methods and computational models[M]. NewYork: Wiley, 1997.
    [17] DL/T401-2002, 高压电缆选用导则[S].

    DL/T401-2002, Guide to the selection of high-voltage cables
  • 加载中
图(16)
计量
  • 文章访问数:  909
  • HTML全文浏览量:  379
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-05
  • 修回日期:  2019-06-04
  • 刊出日期:  2019-07-15

目录

    /

    返回文章
    返回