留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种宽角扫描紧耦合阵列天线单元设计

陆娇君 吴鸿超

陆娇君, 吴鸿超. 一种宽角扫描紧耦合阵列天线单元设计[J]. 强激光与粒子束, 2019, 31: 113202. doi: 10.11884/HPLPB201931.190158
引用本文: 陆娇君, 吴鸿超. 一种宽角扫描紧耦合阵列天线单元设计[J]. 强激光与粒子束, 2019, 31: 113202. doi: 10.11884/HPLPB201931.190158
Lu Jiaojun, Wu Hongchao. Design of a wide-angle scanning tightly coupled dipole array element[J]. High Power Laser and Particle Beams, 2019, 31: 113202. doi: 10.11884/HPLPB201931.190158
Citation: Lu Jiaojun, Wu Hongchao. Design of a wide-angle scanning tightly coupled dipole array element[J]. High Power Laser and Particle Beams, 2019, 31: 113202. doi: 10.11884/HPLPB201931.190158

一种宽角扫描紧耦合阵列天线单元设计

doi: 10.11884/HPLPB201931.190158
基金项目: 

“十三五”装备预研共用技术项目 41413060404

详细信息
    作者简介:

    陆娇君(1994—), 女,硕士研究生,从事宽带宽角扫描相控阵研究; saraeling@163.com

    通讯作者:

    吴鸿超(1976—), 男,高工,从事超宽带天线、电磁计算研究; babaywind@sina.com

  • 中图分类号: TN822

Design of a wide-angle scanning tightly coupled dipole array element

  • 摘要: 提出一种新型紧耦合偶极子阵列天线单元,并结合等效电路对天线参数进行分析与优化。引入频率选择表面置于天线口径上方,取代传统的电介质板,用以改善宽角扫描时阻抗变换。巴伦采用微带线到共面平行双线过渡结构,实现平衡馈电及阻抗变换。仿真结果表明,该阵列能够实现3倍频(2~6 GHz) E面80°、H面45°的波束扫描,且在扫描范围内有源驻波比均小于3。仿真得到的阵列法向交叉极化隔离度保持在25 dB,由于阻性FSS的损耗,天线增益有所下降。该天线结构简单紧凑,易于加工制作,实现了紧耦合阵列的小型化。
  • 图  1  理想馈源馈电的TCDA模型及等效电路

    Figure  1.  TCDA model and equivalent circuit for ideal feed feeding

    图  2  (a) TCDA结构(b)宽带巴伦结构(c)宽带巴伦S参数仿真结果

    Figure  2.  (a) TCDA structure, (b) broadband balun structure and (c) broadband balun S-parameter simulation results

    图  3  FSS等效电路

    Figure  3.  Equivalent circuit of FSS

    图  4  电介质层与FSS仿真结果

    Figure  4.  Dielectric layer and FSS simulation results

    图  5  TCDA加载FSS时有源驻波系数特性曲线

    Figure  5.  Active VSWR characteristic curves loaded with FSS

    图  6  TCDA轴向可实现增益

    Figure  6.  Broadside realized gain of the TCDA

    图  7  20×∞有限阵列

    Figure  7.  20×∞ finite array

    图  8  20×∞阵列归一化方向图,E面:0°/30°/45°/60°/70°/80°;H面:0°/30°/45°

    Figure  8.  20×∞ finite array normalized pattern E-plane: 0°/30°/45°/60°/70°/80°; H-plane: 0°/30°/45°

    表  1  优化参数值

    Table  1.   Optimized parameter value  (mm)

    dE dH w l W2 W3 W4 W5 l2 l3 l4 Wb
    14.3 14.3 3.4 7.7 0.55 1.25 3 3 5 18 3.2 8
    下载: 导出CSV
  • [1] Caminita F, Costanzo S, Massa G D, et al. Reduction of patch antenna coupling by using a compact EBG formed by shorted strips with interlocked branch-stubs[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 811-814. doi: 10.1109/LAWP.2009.2021589
    [2] 唐明春, 肖绍球, 高山山, 等. 新型电谐振人工异向介质抑制阵列天线单元间互耦[J]. 物理学报, 2010, 59(3): 1851-1856. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201003067.htm

    Tang Mingchun, Xiao Shaoqiu, Gao Shanshan, et al. New type of electrical resonance artificial anisotropic medium suppresses mutual coupling between array antenna elements. Acta Physica Sinica, 2010, 59(3): 1851-1856 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201003067.htm
    [3] Munk B, Pryor J, Durham T, et al. A low-profile broadband phased array antenna[C]//Antennas & Propagation Society International Symposium. 2003: 448-451.
    [4] Cedric W L, Dimitris P, Asimina K, et al. Body-worn 67: 1 bandwidth antenna using 3 overlapping dipole elements[C]//11th European Conference on Antennas and Propagation. 2017: 1557-1558.
    [5] Zhong J, Alwan E A, Volakis J L. Ultra-wideband dual-linear polarized phased array with 60° scanning for simultaneous transmit and receive systems[C]//International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications. 2017: 10-141.
    [6] Xiao Shiwei, Yang Shiwen, Chen Yikai, et al. An ultra-wideband tightly coupled dipole array co-designed with low scattering characteristics[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(1): 676-680. doi: 10.1109/TAP.2018.2880038
    [7] Doane J. Wideband low-profile antenna arrays: fundamental limits and practical implementations[J]. Dissertations & Theses-Gradworks, 2013, 76(5): 266.
    [8] Li Xue, Gu Changqing, Han Guodong, et al. A UWB wide-scan tightly coupled dipole array[C]//IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition. 2016: 1-3.
    [9] Yetisir E, Ghalichechian N, Volakis J L. Ultrawideband array with 70° scanning using FSS superstrate[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4256-4265. doi: 10.1109/TAP.2016.2594817
    [10] Kasemodel J A, Chen C C, Volakis J L. Wideband planar array with integrated feed and matching network for wide-angle scanning[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(9): 4528-4537. doi: 10.1109/TAP.2013.2266090
    [11] Zhou Wenyang, Chen Yikai, Yang Shiwen. Dual-polarized tightly coupled dipole array for UHF-X band satellite applications[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 18(3): 467-471.
    [12] Novak M H, Volakis J L. Ultrawideband antennas for multiband satellite communications at UHF-Ku frequencies[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1334-1341. doi: 10.1109/TAP.2015.2390616
    [13] 陈常青, 周志鹏, 张金平, 等. 一种基于紧耦合结构的超宽带天线阵列设计[J]. 现代雷达, 2018, 40(2): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-XDLD201802015.htm

    Chen Changqing, Zhou Zhipeng, Zhang Jinping, et al. Design of ultra-wideband antenna array based on tightly coupled structure. Modern Radar, 2018, 40(2): 73-76 https://www.cnki.com.cn/Article/CJFDTOTAL-XDLD201802015.htm
    [14] Papantonis D, Volakis J. Dual polarized tightly coupled array with substrate loading[J]. IEEE Antennas & Wireless Propagation Letters, 2016, 15: 325-328.
    [15] Munk B A. Broadband wire arrays[M]. Finite Antenna Arrays and FSS, 2009.
    [16] Magill E, Wheeler H. Wide-angle impedance matching of a planar array antenna by a dielectric sheet[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(1): 49-53. doi: 10.1109/TAP.1966.1138622
    [17] Mailloux R J. Phased array antenna handbook[M]. 2nd Ed. Beijing: Publishing House of Electronics Industry, 2008.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1821
  • HTML全文浏览量:  581
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-13
  • 修回日期:  2019-08-12
  • 刊出日期:  2019-11-15

目录

    /

    返回文章
    返回