留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

计及地磁暴影响的电力系统事故链仿真模型

康小宁 徐旖旎 张亚刚 郭明达

康小宁, 徐旖旎, 张亚刚, 等. 计及地磁暴影响的电力系统事故链仿真模型[J]. 强激光与粒子束, 2019, 31: 070014. doi: 10.11884/HPLPB201931.190173
引用本文: 康小宁, 徐旖旎, 张亚刚, 等. 计及地磁暴影响的电力系统事故链仿真模型[J]. 强激光与粒子束, 2019, 31: 070014. doi: 10.11884/HPLPB201931.190173
Kang Xiaoning, Xu Yini, Zhang Yagang, et al. Power system fault chain simulation model considering effect of geomagnetic storm[J]. High Power Laser and Particle Beams, 2019, 31: 070014. doi: 10.11884/HPLPB201931.190173
Citation: Kang Xiaoning, Xu Yini, Zhang Yagang, et al. Power system fault chain simulation model considering effect of geomagnetic storm[J]. High Power Laser and Particle Beams, 2019, 31: 070014. doi: 10.11884/HPLPB201931.190173

计及地磁暴影响的电力系统事故链仿真模型

doi: 10.11884/HPLPB201931.190173
基金项目: 

国家重点研发计划项目 2016YFC0800100

详细信息
    作者简介:

    康小宁(1968-), 男, 教授, 从事电力系统继电保护与变电站综合自动化系统研究, kangxn@xjtu.edu.cn

    通讯作者:

    徐旖旎(1994—), 女, 硕士研究生, 研究方向为地磁暴影响下电力系统风险评估技术, xyni530@gmail.com

  • 中图分类号: TM721

Power system fault chain simulation model considering effect of geomagnetic storm

  • 摘要: 地磁暴影响下地磁感应电流(GIC) 流过变压器中性点, 引起变压器无功损耗增加, 在强地磁暴环境中, 系统的无功补偿装置可能过载, 母线电压下降, 可能引发连锁故障, 继而导致大停电事故。对比事故链各环节特点和因磁暴导致的电力系统停电事故的发展规律, 使用事故链模型来仿真实现地磁暴条件下的电网停电过程。基于自组织临界理论和非故障线路的安全稳定裕度来确定连锁故障的传播路径。结合IEEERTS79系统参数, 估算各母线的地理位置, 借助PowerWorld仿真软件, 以该系统为例, 研究结果验证了所提事故链模型可以反映给定电网条件下, 地磁暴参数对电力系统事故链集与薄弱环节辨识的影响, 研究结果可为量化和防治磁暴电网灾害提供依据。
  • 图  1  结合动态故障树的事故链模型

    Figure  1.  Fault chain model combined with dynamic fault tree theory

    图  2  IEEE-RTS79测试系统单线图

    Figure  2.  Grid construction of IEEE-RTS79

    图  3  计及地磁暴影响的电力系统事故链仿真模型

    Figure  3.  Power system fault chain simulation model considering the impact of geomagnetic storm

    表  1  IEEE-RTS79系统各母线的地理位置

    Table  1.   Estimated geo-location of IEEE-RTS79

    No. latitude/(°) longitude/(°) No. latitude/(°) longitude /(°)
    1 45.276 7 113.770 5 13 45.742 8 114.732 7
    2 45.319 9 113.765 8 14 45.390 7 115.061 5
    3 45.005 7 114.560 6 15 45.174 2 115.180 3
    4 45.094 7 114.188 9 16 45.224 9 115.450 2
    5 45.320 4 114.133 9 17 45.192 9 115.133 6
    6 45.553 7 114.507 8 18 45.199 2 115.397 0
    7 45.451 7 113.608 0 19 45.398 1 115.235 7
    8 45.329 6 113.810 7 20 45.75 9 115.405 0
    9 45.366 3 114.526 0 21 45.415 9 115.680 5
    10 45.366 3 114.526 0 22 46.022 5 115.833 5
    11 45.366 3 114.526 0 23 45.932 2 115.590 0
    12 45.366 3 114.526 0 24 45.005 7 114.360 6
    下载: 导出CSV

    表  2  初始故障的设定

    Table  2.   Initial failure setting

    geomagnetic data SOC lines γi
    E=0 L10(B6-10)
    L25(B15-21)
    L23(B14-16)
    1.547 0
    1.361 6
    1.165 9
    E=12 V/km,130° L10(B6-10)
    L25(B15-21)
    L23(B14-16)
    1.496 1
    1.347 1
    1.153 4
    E=12 V/km,46° L10(B6-10)
    L25(B15-21)
    L7(B3-24,T)
    L23(B14-16)
    1.480 7
    1.340 2
    1.193 3
    1.152 1
    下载: 导出CSV

    表  3  不同磁暴条件下系统的事故链集

    Table  3.   Fault chain sets

    geomagnetic data No. fault chains
    E=0 1 L10-L5-L25-L29
    2 L25-L23-L30-L28-L34-L37
    3 L23-L29
    E=12 V/km,130° 4 L10-L5-L25-L29
    5 L10-L5-L25-L30-L33-L28-L34
    6 L25-L23-L30-L28-L34-L37
    7 L23-L29
    8 L23-L7(T)
    E=12 V/km,46° 9 L10-L5-L25-L29
    10 L10-L5-L25-L30-L33-L28
    11 L25-L28-L30-L28-L34
    12 L7(T)- L23
    13 L7(T)-L6-L2-L28-L23
    14 L7(T)-L28-L24-L25-L33-L34
    15 L23-L29
    下载: 导出CSV

    表  4  事故链13的生成过程

    Table  4.   Process of fault chain 13

    fault line non-faulty line si
    L7(B3-24,T) L6(B3-9) 1.1102
    L6(B3-9) L2(B1-3) 1.0328
    L2(B1-3) L28(B14-16) 1.0293
    L28(B14-16) L23(B14-16) 1.0565
    L23(B14-16) blackout
    下载: 导出CSV
  • [1] 刘文颖, 杨楠, 张建立, 等. 计及恶劣天气因素的复杂电网连锁故障事故链模型[J]. 中国电机工程学报, 2012, 32(7): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201207008.htm

    Liu Wen-ying, Yang Nan, Zhang Jianli, et al. Complex grid failure propagating chain model in consideration of adverse weather. Proceedings of the CSEE, 2012, 32(7): 53-59 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201207008.htm
    [2] 刘连光, 吴伟丽. 磁暴影响电力系统安全风险评估思路与理论框架[J]. 中国电机工程学报, 2014, 34(10): 1583-1591. doi: 10.13334/j.0258-8013.pcsee.2014.10.009

    Liu Lianguang, Wu Weili. Security risk assessment ideas and theoretical framework for power system considering geomagnetic storm. Proceedings of the CSEE, 2014, 34(10): 1583-1591 doi: 10.13334/j.0258-8013.pcsee.2014.10.009
    [3] Boteler D H. Geomagnetic hazards to conducting networks[J]. Natural Hazards, 2003, 28(2-3): 537-561.
    [4] 罗毅, 王英英, 万卫, 等. 电网连锁故障的事故链模型[J]. 电力系统自动化, 2009, 33(24): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT200924002.htm

    Luo Yi, Wang Yingying, Wan Wei, et. al. Fault chains model for cascading failure of grid. Automation of Electric Power Systems, 2009, 33(24): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT200924002.htm
    [5] 顾雪平, 刘雨濛, 王涛, 等. 基于结构平衡理论的电网自组织临界态辨识[J]. 电工技术学报, 2018, 33(17): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201817022.htm

    Gu Xueping, Liu Yumeng, Wang Tao, et al. Self-organized critical state identification of power systems based on structural equilibrium theory. Transactions of China Electrotechnical Society, 2018, 33(17): 1-10 https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201817022.htm
    [6] Zhu Z Q, Wu L J, Xia Z P. An accurate subdomain model for magnetic field computation in slotted surface-mounted permanent-magnet machines[J]. IEEE Trans Magnetics, 2010, 46(4): 1100-1115. doi: 10.1109/TMAG.2009.2038153
    [7] 何飞, 梅生伟, 薛安成, 等. 基于直流潮流的电力系统停电分布及自组织临界性分析[J]. 电网技术, 2006, 30(14): 7-12. doi: 10.3321/j.issn:1000-3673.2006.14.002

    He Fei, Mei Shengwei, Xue Ancheng, et al. Blackout distribution and self-organized criticality of power system based on DC power flow. Power System Technology, 2006, 30(14): 7-12 doi: 10.3321/j.issn:1000-3673.2006.14.002
    [8] 岳贤龙, 王涛, 顾雪平, 等. 基于自组织临界理论的电网脆弱线路辨识[J]. 电力系统保护与控制, 2016, 44(15): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201615003.htm

    Yue Xianlong, Wang Tao, Gu Xueping, et al. Vulnerable line identification of power grid based on self-organizing critical theory. Power System Protection and Control, 2016, 44(15): 18-26 https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201615003.htm
    [9] Overbye T J, Hutchins T R, Shetye K, et al. Integration of geomagnetic disturbance modeling into the power flow: A methodology for large-scale system studies[C]//IEEE North American Power Symposium. 2012: 1-7.
    [10] 于群, 郭剑波. 我国电力系统停电事故自组织临界性的研究[J]. 电网技术, 2006, 30(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS200606001.htm

    Yu Qun, Guo Jianbo. Study on self-organized criticality of power system blackouts in China. Power System Technology, 2006, 30(6): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS200606001.htm
    [11] Carreras B A, Lynch V E, Dobson I, et al. Dynamics, criticality and self-organization in a model for blackouts in power transmission systems[C]//IEEE Hawaii International Conference on System Sciences. 2002, 9: 1-9.
    [12] 吴伟丽. 磁暴诱发电网故障灾害风险分析研究进展[J]. 科学技术与工程, 2016, 16(9): 135-141. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201609022.htm

    Wu Weili. Review of risk analysis for severe grid accident due to geomagnetic storm. Science Technology and Engineering, 2016, 16(9): 135-141 https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201609022.htm
    [13] 王英英. 基于事故链的电力系统连锁故障风险评估与预防控制研究[D]. 武汉: 华中科技大学, 2010.

    Wang YingYing. Risk assessment and prevention control of cascading failures in power system based on fault chains. Wuhan: Huazhong University of Science & Technology, 2010
    [14] 宋毅, 王成山. 一种电力系统连锁故障的概率风险评估方法[J]. 中国电机工程学报, 2009, 29(4): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200904006.htm

    Song Yi, Wang Chengshan. A probabilistic risk assessment method for cascading failure of power system. Proceedings of the CSEE, 2009, 29(4): 27-33 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200904006.htm
    [15] 刘友波, 胥威汀, 丁理杰, 等. 电力系统连锁故障分析理论与应用(二): 关键特征与研究启示[J]. 电力系统保护与控制, 2013, 41(10): 146-155. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201310027.htm

    Liu Youbo, Xu Weiting, Ding Lijie, et al. Power system cascading failure analysis theories and application Ⅱ: Key features of real cascading failures and revelation aspects. Power System Protection and Control, 2013, 41(10): 146-155 https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201310027.htm
    [16] Dobson I, Chen J, Thorp J S, et al. Examining criticality of blackouts in power system models with cascading events[C]//IEEE Hawaii International Conference on System Sciences. 2002, 10: 1-10.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  1480
  • HTML全文浏览量:  468
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-18
  • 修回日期:  2019-06-15
  • 刊出日期:  2019-07-15

目录

    /

    返回文章
    返回