Design of a high power rectangular cavity power combiner
-
摘要: 研究了一种基于矩形腔式功率合成的射频高功率合成器。该合成器可以实现功放模块与合成器的直接耦合,合成效率高,功率容量大,且功率容量可调,可以很好地满足目前CiADS中对固态发射机功率容量的梯度要求。12合1矩形腔式功率合成器仿真结果表明,合成器各输入端到输出端的幅度传输和相位传输具有很好的一致性,最大偏差分别在0.05 dB和0.5°以内,调节功放模块数量可以调节发射机的功率容量。Abstract: This paper studies a high power radio-frequency combiner based on rectangular cavity power combination. The combiner can achieve direct coupling with the power amplifier modules, with high combining efficiency, large power capacity, and adjustable power capacity, which can well meet the current CiADS requirements for the gradient of the power capacity of solid state amplifier. The simulation results of the 12 in 1 combiner show that the amplitude and phase transmissions of each input port to the output port have good consistency, maximum deviation within 0.05 dB and 0.5° respectively. The power capacity of the solid state amplifier can be adjusted by changing the number of power amplifier modules.
-
Key words:
- rectangular cavity /
- power combination /
- direct coupling /
- power capacity
-
表 1 不同插入深度d2和弯转半径r2下的输入耦合度VSWR2
Table 1. Input coupling VSWR2 at different insertion depths d2 and bending radius r2
d2/mm r2/mm VSWR2 d2/mm r2/mm VSWR2 10 10 6.8 14 14 11.8 12 12 9.3 15 15 13.1 15 12 10.1 16 16 14.3 表 2 11合1、8合1、4合1时的传输系数(单位:dB)
Table 2. Transmission coefficients of 11 in 1, 8 in 1, and 4 in 1 combiners
(dB) combiner S1, 13 S2, 13 S3, 13 S4, 13 S5, 13 S6, 13 S7, 13 S8, 13 S9, 13 S10, 13 S11, 13 S12, 13 S13, 13 11 in 1 -67.4 -10.5 -10.5 -10.5 -10.5 -10.5 -10.5 -10.5 -10.5 -10.5 -10.5 -10.5 -45.0 8 in 1 -53.5 -9.10 -9.12 -9.11 -9.10 -53.6 -53.8 -9.10 -9.12 -9.11 -9.10 -53.8 -42.1 4 in 1 -98.5 -66.5 -6.11 -6.11 -65.7 -79.3 -85.0 -66.2 -6.11 -6.11 -67.6 -79.1 -23.8 -
[1] Liu Shuhui, Wang Zhijun, Jia Huan, et al. Physics design of the CIADS 25 MeV demo facility[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 843: 11-17. [2] Chen Zhiqiang. Recent progress in nuclear data measurement for ADS at IMP[J]. Nuclear Science and Techniques, 2017, 28(12): 35-44. [3] 岳军会, 吕朋辉, 曹建社. ADS注入器I束流相位及能量测量系统设计[J]. 核技术, 2018, 41(2): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201802006.htmYue Junhui, Lü Penghui, Cao Jianshe. Beam phase and energy measurement system of ADS injector I. Nuclear technology, 2018, 41(2): 35-41 https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201802006.htm [4] 贾欢. 中国ADS注入器样机Ⅱ束流传输线的设计与调试[D]. 兰州: 中国科学院近代物理研究所, 2015: 7-11.Jia Huan. Design and beam commissioning of beam lines for CADS injector Ⅱ prototype linac. Lanzhou: Institution of Modern Physics, Chinese Academy of Sciences, 2015: 7-11 [5] 高鹏辉, 王志军, 孙列鹏, 等. CiADS固态功率源的可用性设计与分析[J]. 原子核物理评论, 2018, 35(3): 287-293. https://www.cnki.com.cn/Article/CJFDTOTAL-HWDT201803008.htmGao Penghui, Wang Zhijun, Sun Liepeng, et al. Availability designs and analyses of solid-state amplifers for CiADS. Nuclear Physics Review, 2018, 35(3): 287-293 https://www.cnki.com.cn/Article/CJFDTOTAL-HWDT201803008.htm [6] 黄贵荣, 初晨, 金凯, 等. 合肥光源40 kW高频固态发射机的研制进展[J]. 强激光与粒子束, 2010, 22(10): 2417-2420. http://www.hplpb.com.cn/article/id/4542Huang Guirong, Chu Chen, Jin Kai, et al. Status of 40 kW solid state amplifier development at Hefei Light Source. High Power Laser and Particle Beams, 2010, 22(10): 2417-2420 http://www.hplpb.com.cn/article/id/4542 [7] 李超, 黄贵荣, 林宏翔, 等. 合肥光源高功率固态放大器的研制[J]. 原子能科学技术, 2016, 55(5): 939-943. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201605029.htmLi Chao, Huang Guirong, Lin Hongxiang, et al. Development of HLS high power solid state amplifier. High Power Laser and Particle Beams, 2016, 55(5): 939-943 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201605029.htm [8] Liu Yongtao, Huang Guirong, Shang Lei. A method for designing a variable-channel high-power cavity combiner[J]. Chinese Physics C, 2016, 40(8): 152-157. [9] 钟胡天翔, 朱凤, 全胜文, 等. 加速100 mA质子束的低β超导半波长谐振腔内的高阶模[J]. 强激光与粒子束, 2017, 29: 085102. doi: 10.11884/HPLPB201729.170070Zhong-Hu Tianxiang, Zhu Feng, Quan Shengwen, et al. High order modes in low beta SRF half wave resonator cavity for 100 mA proton acceleration. High Power Laser and Particle Beams, 2017, 29: 085102 doi: 10.11884/HPLPB201729.170070