[1] |
Jones R A. Optimization of computer controlled polishing[J]. Applied Optics, 1977, 16(1): 218-224. doi: 10.1364/AO.16.000218
|
[2] |
Nelson J, Sanders G H. The status of the Thirty Meter Telescope project[C]//Proc of SPIE. 2008: 70121A.
|
[3] |
Johns M, Mccarthy P, Raybould K, et al. Giant Magellan Telescope: Overview[C]//Proc of SPIE. 2012: 84441H.
|
[4] |
Wagner R E, Shannon R R. Fabrication of aspherics using a mathematical model for material removal[J]. Applied Optics, 1974, 13(7): 1683-1689. doi: 10.1364/AO.13.001683
|
[5] |
王毅, 倪颖, 余景池. 小型非球面数控抛光技术的研究[J]. 光学精密工程, 2007, 15(10): 1527-1533. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM200710013.htmWang Yi, Ni Ying, Yu Jingchi. Computer-controlled polishing technology for small aspheric lens. Optics and Precision Engineering, 2007, 15(10): 1527-1533 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM200710013.htm
|
[6] |
Wang Zhenzhong, Peng Yunfeng, Guo Yinbiao, et al. Modeling of the static tool influence function of bonnet polishing based on FEA[J]. Int J Adv Manuf Techno, 2014, 74: 341-349. doi: 10.1007/s00170-014-6004-3
|
[7] |
Dong Zhichao, Cheng Haobo, Tam Honyuen. Modified subaperture tool influence functions of a flat-pitch polisher with reverse-calculated material removal rate[J]. Applied Optics, 2014, 53(11): 2455-2464. doi: 10.1364/AO.53.002455
|
[8] |
Nelson D G, Gould A, Klinger C, et al. Incorporating VIBE into the precision optics manufacturing process[C]//Proc of SPIE. 2011: 812613.
|
[9] |
李徐钰, 魏朝阳, 徐文东, 等. 随动压力分布下的非球面抛光去除函数[J]. 光学 精密工程, 2016, 24(12): 3061-3067. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201612027.htmLi Xuyu, Wei Chaoyang, Xu Wendong, et al. Tool influence function in aspheric polishing under dynamic pressure distribution. Optics and Precision Engineering, 2016, 24(12): 3061-3067 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201612027.htm
|
[10] |
王佳, 范斌, 万勇建, 等. 一种评价CCOS抛光工艺误差抑制能力的方法[J]. 光子学报, 2014, 43: 722002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201407035.htmWang Jia, Fan Bin, Wan Yongjian, et al. A method to evaluate the error restraint ability of CCOS process. Acta Photonica Sinica, 2014, 43: 722002 https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201407035.htm
|
[11] |
Mehta A P K, Hufnagel R E. Pressure distribution under flexible polishing tools: I. Conventional aspheric optics[C]//Proc of SPIE. 1990, 1303: 178-188.
|
[12] |
Mehta P K, Reid P B, Derby E A, et al. A mathematical model for optical smoothing prediction of high-spatial-frequency surface errors[C]//Proc of SPIE. 1999, 3786: 447-459.
|
[13] |
Nie Xuqing, Li Shenyi, Shi Feng, et al. Generalized numerical pressure distribution model for smoothing polishing of irregular midspatial frequency errors[J]. Applied Optics, 2014, 53(6): 1020-1027. doi: 10.1364/AO.53.001020
|
[14] |
Kim D W, Park W H, An H K, et al. Parametric smoothing model for visco-elastic polishing tools[J]. Optics Express, 2010, 18(21): 22515-22526. doi: 10.1364/OE.18.022515
|
[15] |
Kim D W, Martin H, Burge J H. Control of mid-spatial-frequency errors for large steep aspheric surfaces[C]//Optical Fabrication & Testing. 2012.
|
[16] |
Shu Yong, Nie Xuqing, Shi Feng, et al. Smoothing evolution model for computer controlled optical surfacing[J]. Journal of Optical Technology, 2014, 81(3): 164-167. doi: 10.1364/JOT.81.000164
|