留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高空电磁脉冲作用下电力系统主要效应模式分析

陈宇浩 谢彦召 刘民周 高冲 李萌 巩少岩 周建辉

陈宇浩, 谢彦召, 刘民周, 等. 高空电磁脉冲作用下电力系统主要效应模式分析[J]. 强激光与粒子束, 2019, 31: 070007. doi: 10.11884/HPLPB201931.190184
引用本文: 陈宇浩, 谢彦召, 刘民周, 等. 高空电磁脉冲作用下电力系统主要效应模式分析[J]. 强激光与粒子束, 2019, 31: 070007. doi: 10.11884/HPLPB201931.190184
Chen Yuhao, Xie Yanzhao, Liu Minzhou, et al. Analysis of high-altitude electromagnetic effect models on power system[J]. High Power Laser and Particle Beams, 2019, 31: 070007. doi: 10.11884/HPLPB201931.190184
Citation: Chen Yuhao, Xie Yanzhao, Liu Minzhou, et al. Analysis of high-altitude electromagnetic effect models on power system[J]. High Power Laser and Particle Beams, 2019, 31: 070007. doi: 10.11884/HPLPB201931.190184

高空电磁脉冲作用下电力系统主要效应模式分析

doi: 10.11884/HPLPB201931.190184
基金项目: 

国家电网公司合作项目 SGRIZLKJ (2016) 699号

详细信息
    作者简介:

    陈宇浩(1993—), 男,博士研究生,从事电磁脉冲效应研究; chenyuhao@stu.xjtu.edu.cn

    通讯作者:

    谢彦召(1973—), 男,博士,从事电磁脉冲研究; yzxie@xjtu.edu.cn

  • 中图分类号: TM15

Analysis of high-altitude electromagnetic effect models on power system

  • 摘要: 随着电网智能化和整体规模的提高,现代电力系统越来越容易受到高空电磁脉冲的威胁,一旦关键环节故障将有可能导致连锁反应,造成大面积停电。而针对不同的电力设备,其效应模式和威胁等级也有所不同,需要进行分类和分级研究。根据电力设备在电磁脉冲作用下的不同效应模式,将其分为SCADA系统与继电保护设备,变压器、互感器等线圈类设备,线路与设备避雷器与其他设备,并分析了其效应机理。然后考虑高空电磁脉冲威胁下电力设备存在多种效应等级,介绍了不同效应分类方法以及多等级效应评估模型。最后综合考虑易损性和重要性以及系统间的级联影响,分别梳理总结了在E1和E3作用下电力系统的故障链模式。
  • 图  1  综合电磁易损性和关键性的电力设备风险趋势示意图

    Figure  1.  Sketch of electric equipment assessment combining vulnerability and criticality

    图  2  E1对电力系统威胁故障链示意图

    Figure  2.  Failure chain sketch of E1 on power system

    图  3  E3对电力系统威胁故障链示意图

    Figure  3.  Failure chain sketch of E3 on power system

  • [1] Nitsch D, Camp M, Sabath F, et al. Susceptibility of some electronic equipment to HPEM threats[J]. IEEE Trans Electromagn Compat, 2004, 46(3): 380-389. doi: 10.1109/TEMC.2004.831842
    [2] Camp M, Gerth H, Garbe H, et al. Predicting the breakdown behavior of microcontrollers under EMP/UWB impact using a statistical analysis[J]. IEEE Trans Electromagn Compat, 2004, 46(3): 368-379. doi: 10.1109/TEMC.2004.831816
    [3] Mänsson D, Thottappillil R, Nilsson T, et al. Susceptibility of civilian GPS receivers to electromagnetic radiation[J]. IEEE Trans Electromagn Compat, 2008, 50(2): 434-437. doi: 10.1109/TEMC.2008.921015
    [4] Parfenov Y V, Zdoukhov L N, Shurupov A V, et al. Research of flashover of power line insulators due to high-voltage pulses with power ON and power OFF[J]. IEEE Trans Electromagn Compat, 2013, 55(3): 467-474. doi: 10.1109/TEMC.2012.2236094
    [5] Foster J S, Gjelde E, Graham W R, et al. Report of the commission to assess the threat to the United States from electromagnetic pulse (EMP) attack: Critical national infrastructures[R]. 2008.
    [6] 韩军, 谢彦召, 翟爱斌, 等. 静态随机存储器的电磁脉冲效应实验研究[J]. 核电子学与探测技术, 2010, 30(11): 1423-1423. https://www.cnki.com.cn/Article/CJFDTOTAL-HERE201011003.htm

    Han Jun, Xie Yanzhao, Zhai Aibin, et al. Experimental investigation on EMP effect of SRAM. Nuclear Electronics and Detection Technology, 2010, 30(11): 1423-1423 https://www.cnki.com.cn/Article/CJFDTOTAL-HERE201011003.htm
    [7] 邓建红, 周启明, 赵刚, 等. 近地面1553B通信系统HEMP效应试验[J]. 信息与电子工程, 2010, 8(3): 318-323. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201003018.htm

    Deng Jianhong, Zhou Qiming, Zhao Gang, et al. HEMP effect experiment for surface 1553B communication system. Information and Electronic Engineering, 2010, 8(3): 318-323 https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201003018.htm
    [8] 高晶, 孙继银, 赵星阳, 等. 电磁脉冲作用下RS232接口受损特性分析[J]. 微电子学与计算机, 2009, 26(4): 252-254. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYJ200904070.htm

    Gao Jing, Sun Jiyin, Zhao Xingyang, et al. Fault analysis of RS232 interface interfered by the electromagnetic pulse. Microelectronics & Computer, 2009, 26(4): 252-254 https://www.cnki.com.cn/Article/CJFDTOTAL-WXYJ200904070.htm
    [9] 马运普, 陈子铭, 高成. 在HEMP感应过电压作用下10 kV避雷器响应特性的研究[J]. 工程兵工程学院学报, 1996, 11(3): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DCPQ201803016.htm

    Ma Yunpu, Chen Ziming, Gao Cheng. Study of the 10kV lightning arresters response under the HEMP induced overvoltage. Journal of Nanjing Engineering Institute, 1996, 11(3): 6-10 https://www.cnki.com.cn/Article/CJFDTOTAL-DCPQ201803016.htm
    [10] Berge J, Varma R K, Marti L. Laboratory validation of the relationship between geomagnetically induced current (GIC) and transformer absorbed reactive power[C]//Electrical Power and Energy Conference. 2011: 491-495.
    [11] Takasu N, Oshi T, Miyawaki F, et al. An experimental analysis of DC excitation of transformers by geomagnetically induced currents[J]. IEEE Trans Power Delivery, 1994, 9(4): 1173-1182.
    [12] 张冰, 刘连光, 肖湘宁. 地磁感应电流对变压器振动、噪声的影响[J]. 高电压技术, 2009(4): 900-904. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200904034.htm

    Zhang Bing, Liu Lianguang, Xiao Xiangning. Effects of geomagnetically induced current on the vibration and noise of transformers. High Voltage Engineering, 2009(4): 900-904 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200904034.htm
    [13] Girgis R, Vedante K. Effects of GIC on power transformers and power systems[C]//2012 IEEE Transmission and Distribution Conference and Exposition. 2012: 1-8.
    [14] Foster J S, Gjelde E, Graham W R, et al. Report of the commission to assess the threat to the United States from electromagnetic pulse (EMP) attack. Volume 1: Executive report[R]. 2004.
    [15] 王葵, 孙莹. 电力系统自动化[M]. 北京: 中国电力出版社, 2012.

    Wang Kui, Sun Ying. Power system automation. Beijing: China Electric Power Press, 2012
    [16] Florkowski M, Furgal J, Pajak P. Analysis of fast transient voltage distributions in transformer windings under different insulation conditions[J]. IEEE Trans Dielectrics and Electrical Insulation, 2012, 19(6): 1991-1998. doi: 10.1109/TDEI.2012.6396957
    [17] Sabath F. Classification of electromagnetic effects at system level[C]//Int Sympon Electromagn Compat. 2008.
    [18] LiKejie, Xie Yanzhao, Chen Yuhao, et al. Multinomial regression model for the evaluation of multi-level effects caused by high-power electromagnetic environments[J]. IEEE Trans Electromagn Compat, 2019, 61(1): 149-156.
    [19] LiuYu, Han Feng, Wang Jianguo, et al. Vulnerability assessment of a multistate component for IEMI based on a Bayesian method[J]. IEEE Trans Electromagn Compat, 2019, 61(2): 467-475.
  • 加载中
图(3)
计量
  • 文章访问数:  1874
  • HTML全文浏览量:  649
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-24
  • 修回日期:  2019-06-15
  • 刊出日期:  2019-07-15

目录

    /

    返回文章
    返回