留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深度卷积神经网络在辐射环境下核废料检测中的应用

向伟 史晋芳 刘桂华 徐锋

向伟, 史晋芳, 刘桂华, 等. 深度卷积神经网络在辐射环境下核废料检测中的应用[J]. 强激光与粒子束, 2019, 31: 116001. doi: 10.11884/HPLPB201931.190220
引用本文: 向伟, 史晋芳, 刘桂华, 等. 深度卷积神经网络在辐射环境下核废料检测中的应用[J]. 强激光与粒子束, 2019, 31: 116001. doi: 10.11884/HPLPB201931.190220
Xiang Wei, Shi Jinfang, Liu Guihua, et al. Application of deep convolutional neural network in detection of nuclear waste in radiation environment[J]. High Power Laser and Particle Beams, 2019, 31: 116001. doi: 10.11884/HPLPB201931.190220
Citation: Xiang Wei, Shi Jinfang, Liu Guihua, et al. Application of deep convolutional neural network in detection of nuclear waste in radiation environment[J]. High Power Laser and Particle Beams, 2019, 31: 116001. doi: 10.11884/HPLPB201931.190220

深度卷积神经网络在辐射环境下核废料检测中的应用

doi: 10.11884/HPLPB201931.190220
基金项目: 

国防科工局核能开发科研项目 [2016]1295

国家自然科学基金项目 11602292

国家自然科学基金青年基金项目 61701421

详细信息
    作者简介:

    向伟(1994—),男,硕士研究生,从事深度学习、目标检测研究; 924717953@qq.com

    通讯作者:

    史晋芳(1977—),女,副教授,从事机器视觉工程研究; 603071939@qq.com

  • 中图分类号: X946

Application of deep convolutional neural network in detection of nuclear waste in radiation environment

  • 摘要: 针对辐射环境下核废料检测准确率低的问题,提出一种基于深度卷积神经网络的辐射环境下核废料检测算法Dense-Dilated-YOLO V3。实验结果表明,Dense-Dilated-YOLO V3在不增加参数的情况下扩大了网络感受野,也有效避免图像信息的损失,同时能够在核辐射环境下提取到更多的目标细节特征,对辐射环境下目标检测的准确率可达93.29%,比原算法提高5.53%,召回率可达91.73%,提高了8.28%,有效解决了复杂辐射环境下核废料检测准确率低的问题,为辐射环境下核废料检测提供了新的途径。
  • 图  1  Darknet-53网络结构

    Figure  1.  The structure of Darknet-53 network

    图  2  Dense-Dilated- YOLO V3结构图

    Figure  2.  The structure of Dense-Dilated-YOLO V3

    图  3  去噪预处理图像

    Figure  3.  Denoising preprocessing of image

    图  4  网络训练参数收敛折线图

    Figure  4.  Network training parameter of the convergence line graph

    图  5  YOLO V3和Dense-Dilated-YOLO V3检测效果对比图

    Figure  5.  Detection effect comparison chart of YOLO V3 and Dense-Dilated-YOLO V3

    表  1  网络性能结果对比表

    Table  1.   The comparison table of Network performance result

    evaluation index Accuracy/% RECALL/% IOU/ % MAP/ %
    YOLO V3 87.76 83.45 83.97 82.58
    Dense-Dilated-YOLO V3 93.29 91.73 88.64 90.34
    下载: 导出CSV
  • [1] 王德娇, 史晋芳, 吴倩, 等. 一种混合降噪方法在辐射图像降噪处理中的应用[J]. 机械设计与制造, 2017(1): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201701026.htm

    Wang Dejiao, Shi Jinfang, Wu Qian, et al. Application of integrative denoising method for radiation image denoising. Mechanical Design and Manufacturing, 2017(1): 97-100 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201701026.htm
    [2] 仝跃, 黄宏伟, 张东明, 等. 高放废物处置地下实验室建设期风险接受准则[J]. 中国安全科学学报, 2017, 27(2): 151-156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201702028.htm

    Tong Yue, Huang Hongwei, Zhang Dongming, et al. Research on risk acceptance criteria for construction of HLW geological disposal URL. China Safety Science Journal, 2017, 27(2): 151-156 https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201702028.htm
    [3] 阙渭焰. 复杂辐射环境与武器装备试验评估[J]. 强激光与粒子束, 2015, 27: 103201. doi: 10.11884/HPLPB201527.103201

    Que Weiyan. Military system radiation environments effects test and evaluation. High Power Laser and Particle Beams, 2015, 27: 103201 doi: 10.11884/HPLPB201527.103201
    [4] Girshick R, Donahue J, Darrelland T, et al. Rich feature hierarchies for object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2014.
    [5] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 39(6): 1137-1149.
    [6] Girshick R. Fast R-CNN[C]//Proc of IEEE International Conference on Computer Vision. 2015: 1440-1448.
    [7] He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]//IEEE International Conference on Computer Vision. 2017: 2980-2988.
    [8] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]//European Conference on Computer Vision. 2016: 21-37.
    [9] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//IEEE Computer Vision and Pattern Recognition. 2016: 779-788.
    [10] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2017: 6517-6525.
    [11] Redmon J, Farhadi A. YOLOv3: An incremental improvement[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2018: 89-95.
    [12] 王琳, 卫晨, 李伟山, 等. 结合金字塔池化模块的YOLOv2的井下行人检测[J]. 计算机工程与应用, 2019, 55(3): 133-139. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201903022.htm

    Wang Lin, Wei Cheng, Li Weishan, et al. Pedestrian detection based on YOLOv2 with pyramid pooling module in underground coal mine. Computer Engineering and Applications, 2019, 55(3): 133-139 https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201903022.htm
    [13] 周云成, 许童羽, 邓寒冰, 等. 基于面向通道分组卷积网络的番茄主要器官实时识别[J]. 农业工程学报, 2018, 337(10): 161-170. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201810019.htm

    Zhou Yuncheng, Xu Tongyu, Deng Hanbing, et al. Real-time recognition of main organs in tomato based on channel wise group convolutional network. Transactions of the Chinese Society of Agricultural Engineering, 2018, 337(10): 161-170 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201810019.htm
    [14] 吴天舒, 张志佳, 刘云鹏, 等. 结合YOLO检测和语义分割的驾驶员安全带检测[J]. 计算机辅助设计与图形学学报, 2019, 31(1): 126-131.

    Wu Tianshu, Zhang Zhijia, Liu Yunpeng, et al. Driver seat belt detection based on YOLO detection and semantic segmentation. Journal of Computer-Aided Design and Computer Graphics, 2019, 31(1): 126-131
    [15] 李策, 张亚超, 蓝天, 等. 一种高分辨率遥感图像视感知目标检测算法[J]. 西安交通大学学报, 2018, 52(6): 14-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201806002.htm

    Li Ce, Zhang Yachao, Lan Tian, et al. An object detection algorithm with visual perception for high-resolution REM. Journal of Xi'an Jiaotong University, 2018, 52(6): 14-21 https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201806002.htm
    [16] Jégou S, Drozdzal M, Vazquez D, et al. The one hundred layers tiramisu: Fully convolutional DenseNets for semantic segmentation[C]//Computer Vision and Pattern Recognition. 2017: 1175-1183.
    [17] Kudo Y, Aoki Y. Dilated convolutions for image classification and object localization[C]//IEEE Fifteenth Iapr International Conference on Machine Vision Applications. 2017: 452-455.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1329
  • HTML全文浏览量:  207
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-17
  • 修回日期:  2019-09-04
  • 刊出日期:  2019-11-15

目录

    /

    返回文章
    返回