留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间啁啾的宽带激光倍频技术

陶昱东 胡东霞 韩伟

陶昱东, 胡东霞, 韩伟. 基于空间啁啾的宽带激光倍频技术[J]. 强激光与粒子束, 2020, 32: 011022. doi: 10.11884/HPLPB202032.190146
引用本文: 陶昱东, 胡东霞, 韩伟. 基于空间啁啾的宽带激光倍频技术[J]. 强激光与粒子束, 2020, 32: 011022. doi: 10.11884/HPLPB202032.190146
Tao Yudong, Hu Dongxia, Han Wei. Broadband second harmonic generation of spatially chirped pulses[J]. High Power Laser and Particle Beams, 2020, 32: 011022. doi: 10.11884/HPLPB202032.190146
Citation: Tao Yudong, Hu Dongxia, Han Wei. Broadband second harmonic generation of spatially chirped pulses[J]. High Power Laser and Particle Beams, 2020, 32: 011022. doi: 10.11884/HPLPB202032.190146

基于空间啁啾的宽带激光倍频技术

doi: 10.11884/HPLPB202032.190146
基金项目: 国家自然科学基金项目(61775199)
详细信息
    作者简介:

    陶昱东(1994—),男,硕士,从事非线性光学方面的研究;953400568@qq.com

    通讯作者:

    胡东霞(1978—),男,研究员,硕士生导师,主要从事强激光技术研究;dongxia.hu@163.com

  • 中图分类号: O437

Broadband second harmonic generation of spatially chirped pulses

  • 摘要: 提出一种新型的宽带倍频方案,利用时空耦合效应将宽带的时间啁啾光转换成空间啁啾光,采用多块晶体并联、各晶体独立调谐的技术途径对空间啁啾光进行谐波转换,因此倍频效率与窄带激光倍频相当。理论研究表明,采用KDP晶体I类位相匹配,对中心波长为1 053 nm的宽带基频光实现了带宽约30 nm、转换效率大于60%的高效率宽带二倍频。而且倍频光仍为线性啁啾宽带光,具备可压缩性。
  • 图  1  基于光栅和棱镜进行展宽的空间啁啾宽带二倍频方案的示意图

    Figure  1.  Schematic of the broadband second harmonic generation (SHG) with pulse spatially chirped by diffraction grating and dispersing prisms

    图  2  空间啁啾倍频方案中,单一晶体和两块晶体拼接的情况下,不同频率成分的转换效率及倍频光的光强曲线

    Figure  2.  Conversion efficiency of different frequency and the intensityly of the frequency-doubled pulse using a single crystal and two spliced crystals in the spatially chirping scheme

    图  3  KDP晶体I型倍频过程中,传统倍频方案、多块晶体并联的空间啁啾倍频方案下,倍频效率随晶体长度的分布曲线

    Figure  3.  Efficiency changes with crystal length of the traditional SHG and SHG with spatially chirped pulse in the KDP I crystal

    图  4  在空间啁啾倍频方案中,输出倍频光的归一化光强度在(a)空间域和(b)频率域上的分布曲线

    Figure  4.  Normalized intensity of frequency-doubled pulse of spatial (a) and frequency (b) domain

    图  5  (a)晶体出射的和(b)光栅G2出射的倍频光在“x-ω”域上的归一化光强图像

    Figure  5.  Normalized intensity of the frequency-doubled pulse after the crystal (a) and after the second grating (b) in the “x-ω” field

  • [1] Ed G. Laser physics: extreme light[J]. Nature, 2007, 446(7131): 8-16. doi: 10.1038/446008a
    [2] Danson C, Hillier D, Hopps N, et al. Petawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2015: 5-18.
    [3] 刘兰琴, 张颖, 王文义, 等. SG-Ⅲ原型装置数十nm宽带数kJ输出能力评估[J]. 强激光与粒子束, 2014, 26:092009. (Liu Lanqin, Zhang Ying, Wang Wenyi, et al. Kilojoule energy output capability evaluation of tens-nm broadband laser in SG-III prototype laser facility[J]. High Power Laser and Particle Beams, 2014, 26: 092009
    [4] 任广森, 孙全, 吴武明, 等. 径向偏振调制对聚焦光斑匀滑及偏振特性的影响[J]. 强激光与粒子束, 2015, 27:122008. (Ren Guangsen, Sun Quan, Wu Wuming, et al. Effect of radial polarization modulation on smoothing and polarization properties of focal speckle[J]. High Power Laser and Particle Beams, 2015, 27: 122008
    [5] Néauport J, Journot E, Gaborit G, et al. Design, optical characterization, and operation of large transmission gratings for the laser integration line and laser megajoule facilities[J]. Applied Optics, 2005, 44(16): 3143-3152. doi: 10.1364/AO.44.003143
    [6] 于淼, 金光勇, 王超. 高峰值功率KDP晶体四倍频266 nm紫外激光器[J]. 强激光与粒子束, 2015, 27:041003. (Yu Miao, Jin Guangyong, Wang Chao. High peak power fourth harmonic 266 nm UV laser using a KDP crystal[J]. High Power Laser and Particle Beams, 2015, 27: 041003
    [7] Mero M, Petrov V. High-power, few-cycle, angular dispersion compensated mid-infrared pulses from a noncollinear optical parametric amplifier[J]. IEEE Photonics Journal, 2017, 9(3): 1-8.
    [8] Richter T, Schmidt-Langhorst C, Elschner R, et al. Distributed 1-Tb/s all-optical aggregation capacity in 125-GHz optical bandwidth by frequency conversion in fiber[C]//IEEE European Conference on Optical Communication (ECOC). 2015.
    [9] Dontsova E I, Vatnik I D, Babin S A, et al. Frequency doubling of Raman fiber lasers with random distributed feedback[J]. Optics Letters, 2016, 41(7): 1439-1442. doi: 10.1364/OL.41.001439
    [10] Lanka N R, Patnaik S A, Harjani R A. Frequency-hopped quadrature frequency synthesizer in 0.13-μm technology[J]. IEEE Journal of Solid-State Circuits, 2011, 46(9): 2021-2032. doi: 10.1109/JSSC.2011.2139490
    [11] 王芳, 李富全, 贾怀庭, 等. 兼容多波长及多脉宽输出的频率转换系统设计[J]. 强激光与粒子束, 2015, 27:032018. (Wang Fang, Li Fuquang, Jia Huaiting, et al. Design of compatible harmonic generation system for multi wavelength and multiple pulse-width laser output[J]. High Power Laser and Particle Beams, 2015, 27: 032018
    [12] Zhu H, Wang T, Zheng W, et al. Efficient second harmonic generation of femtosecond laser at 1 μm[J]. Optics Express, 2004, 12(10): 2150-2155. doi: 10.1364/OPEX.12.002150
    [13] Kanai T, Zhou X, Sekikawa T, et al. Generation of subterawatt sub-10-fs blue pulses at 1-5 kHz by broadband frequency doubling[J]. Optics Letters, 2003, 28(16): 1484-1486. doi: 10.1364/OL.28.001484
    [14] Schmidt B E, Nicolas Thiré, Boivin M, et al. High gain-frequency domain optical parametric amplification (FOPA)[J]. Nature Communications, 2014, 5(5): 3643-3644.
    [15] Gruson V, Ernotte G, Lassonde P, et al. 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification[J]. Optics Express, 2017, 25(22): 27706. doi: 10.1364/OE.25.027706
  • 加载中
图(5)
计量
  • 文章访问数:  1212
  • HTML全文浏览量:  483
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-06
  • 修回日期:  2019-12-02
  • 刊出日期:  2019-12-26

目录

    /

    返回文章
    返回