留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率激光装置主放大系统结构表面粗糙对自激振荡的影响

廖予祯 王德恩 邓学伟 张鑫 杨英 郭雨源 郑胜亨 袁强 胡东霞

廖予祯, 王德恩, 邓学伟, 等. 高功率激光装置主放大系统结构表面粗糙对自激振荡的影响[J]. 强激光与粒子束, 2020, 32: 011020. doi: 10.11884/HPLPB202032.190274
引用本文: 廖予祯, 王德恩, 邓学伟, 等. 高功率激光装置主放大系统结构表面粗糙对自激振荡的影响[J]. 强激光与粒子束, 2020, 32: 011020. doi: 10.11884/HPLPB202032.190274
Liao Yuzhen, Wang Deen, Deng Xuewei, et al. Influence of structural surface roughness on self-excited oscillation of main amplification system of high power laser device[J]. High Power Laser and Particle Beams, 2020, 32: 011020. doi: 10.11884/HPLPB202032.190274
Citation: Liao Yuzhen, Wang Deen, Deng Xuewei, et al. Influence of structural surface roughness on self-excited oscillation of main amplification system of high power laser device[J]. High Power Laser and Particle Beams, 2020, 32: 011020. doi: 10.11884/HPLPB202032.190274

高功率激光装置主放大系统结构表面粗糙对自激振荡的影响

doi: 10.11884/HPLPB202032.190274
基金项目: 国家自然科学基金项目(61775199);中物院“双百人才”基金项目
详细信息
    作者简介:

    廖予祯(1995—),女,学士,研究实习员,从事高功率固体激光技术研究;lyzfreee@163.com

    通讯作者:

    王德恩(1986—),男,硕士,助理研究员,从事高功率固体激光光束质量控制研究;sduwde@126.com

  • 中图分类号: TN248.1

Influence of structural surface roughness on self-excited oscillation of main amplification system of high power laser device

  • 摘要: 对于采用离轴多程放大技术的高功率激光装置,抑制其自激振荡的技术具有重大研究价值。针对工程中发现的主放大系统小孔板附近结构表面比较光亮,当腔内放大器工作时,在增益足够条件下,光亮结构面和腔镜间形成谐振腔而产生自激振荡,烧蚀腔内器件的问题,基于蒙特卡洛方法模拟结构表面,依据几何光学原理推导了激光光束在结构表面反射模型,采用该模型代入工程中光路部分参数计算了主放大系统结构表面粗糙处理工艺和反射进入放大器内份额的关系,并将该表面处理工艺应用于工程中,通过增大结构表面粗糙度,使形成的谐振腔损耗大于增益,为抑制高功率激光装置主放大系统自激振荡提供了依据。
  • 图  1  放大器光路结构及腔镜背面自激振荡时间波形

    Figure  1.  Amplifier optical path structure and self-oscillation time waveform in the back of cavity mirror

    图  2  空间滤波器小孔附近自激振荡烧蚀痕迹

    Figure  2.  Ablative trace near the aperture of the spatial filter

    图  3  蒙特卡罗法构造的二维高斯粗糙面

    Figure  3.  Two-dimensional Gaussian rough surface constructed by Monte-Carlo method

    图  4  模拟出的圆形光斑经高斯粗糙表面反射后的光斑

    Figure  4.  Simulated circular light spot which is reflected by a Gaussian rough surface

    图  5  小孔板PA1与腔镜CM之间的谐振腔

    Figure  5.  Resonant cavity between the orifice plate and the cavity mirror

    图  6  抛(喷)丸表面粗糙度比较样块

    Figure  6.  Surface roughness comparison of samples prepared by shot blasting

    图  7  小孔尺寸、表面粗糙度与进入主放份额关系

    Figure  7.  Relationship between aperture size, surface roughness and the proportion of reflected laser entering the main amplification system

    图  8  实验过程

    Figure  8.  Experiment procedure

    图  9  CCD上采集到的光斑图像

    Figure  9.  Spot image collected on CCD

    图  10  模拟出的光斑图像

    Figure  10.  Simulated spot image

    图  11  光强统计分布

    Figure  11.  Statistical distribution of light intensity

    图  12  增大结构表面粗糙度

    Figure  12.  Increasing the surface roughness of the structure

    图  13  增大结构表面粗糙度前后的自激振荡波形测试

    Figure  13.  Self-oscillation waveform test before and after increasing the surface roughness of the structure

    表  1  表面粗糙程度的定性划分

    Table  1.   Qualitative division of surface roughness

    geometric statisticstypical scattering characteristicsrepresentative surface
    subtle roughnessδs<0.1,l$\gg $λspecular reflection with specular reflection peakmachine-finished surface, calm water surface
    slight roughness0.1<δs<0.3,l$\gg $λnear diffuse reflection with peaks between mirror
    and normal direction
    ground surface, general machined surface
    strong roughness0.3<δs<1,lλdiffuse reflection with backward enhancement and
    significant depolarization effect
    artificial special surface
    extreme roughnessδs>1,lλsimilar to an ideal reflectorunknown surface
    下载: 导出CSV

    表  2  比较样块表面工艺统计参数

    Table  2.   Comparison of sample surface process statistics

    σ/μml/μmδs
    1#0.514.230.171
    2#0.955.720.235
    3#1.467.240.285
    4#1.958.780.314
    下载: 导出CSV
  • 张小民, 魏晓峰. 中国新一代巨型高峰值功率激光装置发展回顾[J]. 中国激光, 2019, 46:0100003. (Zhang Xiaomin, Wei Xiaofeng. Review of new generation of huge-scale high peak power laser facility in china[J]. Chinese Journal of Lasers, 2019, 46: 0100003
    甘啟俊, 姜本学, 张攀德, 等. 高平均功率固体激光器研究进展[J]. 激光与光电子学进展, 2017, 54(1):29-39. (Gan Qijun, Jiang Benxue, Zhang Pande, et al. Research progress of high average power solid-state lasers[J]. Laser & Optoelectronics Progress, 2017, 54(1): 29-39
    谭吉春, 景峰, 朱启华, 等. 多通放大器腔内杂散光[J]. 强激光与粒子束, 2000, 12(2):159-163. (Tan Jichun, Jing Feng, Zhu Qihua, et al. Stray light inside multi-pass laser cavity of the SG-Ⅲ prototype module[J]. High Power Laser and Particle Beams, 2000, 12(2): 159-163
    刘红婕, 朱启华, 蒋东镔, 等. 双程放大实验中自激振荡的抑制[J]. 强激光与粒子束, 2000, 12(s2):179-181. (Liu Hongjie, Zhu Qihua, Jiang Dongbin, et al. Restrain of the self-excitation oscillation in the two-pass amplification[J]. High Power Laser and Particle Beams, 2000, 12(s2): 179-181
    Bowers M, Wisoff J, Herrmann M, et al. Status of NIF laser and high power laser research at LLNL[C]//Proc of SPIE. 2017: 1008403.
    Manes K R, Spaeth M L, Adams J J, et al. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science & Technology, 2016, 69(1): 146-249.
    李欣雪, 唐东成, 邓超兵, 等. 随机粗糙面研究参数特性分析[J]. 电子世界, 2017(10):55-55. (Li Xinxue, Tang Dongcheng, Deng Chaobing, et al. Analysis of parameter characteristics of random rough surfaces[J]. Electronics World, 2017(10): 55-55 doi: 10.3969/j.issn.1003-0522.2017.10.034
    Zou M, Yu B, Feng Y, et al. A Monte Carlo method for simulating fractal surfaces[J]. Physica A Statistical Mechanics & Its Applications, 2007, 386(1): 176-186.
    Da B, Mao S F, Zhang G H, et al. Monte Carlo modeling of surface excitation in reflection electron energy loss spectroscopy spectrum for rough surfaces[J]. Journal of Applied Physics, 2012, 112: 034310. doi: 10.1063/1.4739491
    田炜. 随机粗糙面光散射特性研究[D]. 陕西: 西安电子科技大学, 2009: 7-11.

    Tian Wei. Research on light scattering characteristics of random rough surfaces. Shanxi: Xidian University, 2009: 7-11
    黄于恒. 粗糙面电磁散射数值方法研究[D]. 武汉: 华中科技大学, 2008: 7-9.

    Huang Yuheng, Research on numerical methods of electromagnetic scattering from rough surfaces. Wuhan: Huazhong University of Science and Technology, 2008: 7-9
    Rui W, Guo L, Zhang Z. Scattering from contaminated rough sea surface by iterative physical optics model[J]. IEEE Geoscience & Remote Sensing Letters, 2017, 13(4): 500-504.
    Mohammed N A, Elkarim M A. Exploring the effect of diffuse reflection on indoor localization systems based on RSSI-VLC[J]. Optics Express, 2015, 23(16): 20297-20313. doi: 10.1364/OE.23.020297
    Carbone N A, Baez G R, García H A, et al. Diffuse reflectance optical topography: location of inclusions in 3D and detectability limits[J]. Biomedical Optics Express, 2014, 5(5): 1336-1354. doi: 10.1364/BOE.5.001336
    张晓晖, 张爽, 孙春生. 粗糙海面对高斯分布激光光束的反射模型推导[J]. 物理学报, 2016, 65:144204. (Zhang Xiaohui, Zhang Shuang, Sun Chunsheng. Modeling of Gaussian laser beam reflection from rough sea surface[J]. Acta Physica Sinica, 2016, 65: 144204
    丁磊, 赵润昌, 梁樾, 等. 高功率激光装置预放大系统自激振荡抑制技术研究[J]. 激光与红外, 2007, 37(4):326-328. (Ding Lei, Zhao Runchang, Liang Yue, et al. Research of the technique of restraining the self-oscillations in the preamplifier system of high power laser facility[J]. Laser & Infrared, 2007, 37(4): 326-328 doi: 10.3969/j.issn.1001-5078.2007.04.009
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  2168
  • HTML全文浏览量:  517
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-23
  • 修回日期:  2019-12-20
  • 网络出版日期:  2019-12-26
  • 刊出日期:  2019-12-26

目录

    /

    返回文章
    返回