留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光电导天线太赫兹辐射峰值调控研究

熊中刚 邓琥 熊亮 杨洁萍 尚丽平

熊中刚, 邓琥, 熊亮, 等. 光电导天线太赫兹辐射峰值调控研究[J]. 强激光与粒子束, 2020, 32: 033102. doi: 10.11884/HPLPB202032.190302
引用本文: 熊中刚, 邓琥, 熊亮, 等. 光电导天线太赫兹辐射峰值调控研究[J]. 强激光与粒子束, 2020, 32: 033102. doi: 10.11884/HPLPB202032.190302
Xiong Zhonggang, Deng Hu, Xiong Liang, et al. Research on terahertz radiation peak control of photoconductive antenna[J]. High Power Laser and Particle Beams, 2020, 32: 033102. doi: 10.11884/HPLPB202032.190302
Citation: Xiong Zhonggang, Deng Hu, Xiong Liang, et al. Research on terahertz radiation peak control of photoconductive antenna[J]. High Power Laser and Particle Beams, 2020, 32: 033102. doi: 10.11884/HPLPB202032.190302

光电导天线太赫兹辐射峰值调控研究

doi: 10.11884/HPLPB202032.190302
基金项目: 国防基础科研计划项目(JCKY2018404C007);国防技术基础项目(JSZL2018204C002,JSZL2017404A001);四川省科技厅重点研发项目(2019YFG0114);广西自然科学基金资助项目(2019GXNSFBA185013)
详细信息
    作者简介:

    熊中刚(1986—),男,博士研究生,副教授,主要从事太赫兹光电导天线、机械检测与控制方面的研究工作;xzglsl2013@163.com

    通讯作者:

    尚丽平(1968—),女,博士后,教授,博士生导师,主要从事太赫兹技术、传感检测等方面研究工作;shangliping@swust.edu.cn

  • 中图分类号: TN201

Research on terahertz radiation peak control of photoconductive antenna

  • 摘要: 针对微结构光电导天线与飞秒激光之间相互作用效应以及辐射太赫兹波调控问题进行了研究。采用德鲁德-洛伦兹理论模型获得微结构光电导天线辐射光电流密度,通过时域有限差分把光电流密度迭代在激励网格上,结合麦克斯韦方程求解时变电磁场,并通过传输线格林函数获得多层介质近场到远场的辐射太赫兹波,建立了辐射光电流与辐射阻抗、电磁共振模式之间的关系模型,模拟仿真分析了微结构S型光电导天线太赫兹波辐射调控机理。研究结果表明:微结构改变了天线等效模型的辐射阻抗;同时得知耦合系数不为零时存在耦合作用,且随着耦合系数增大共振频率峰值发生辐射增强和位移;并通过设计S型光电导天线获得辐射峰值频率调整范围为0.50~0.80 THz之间,对比工形天线辐射峰值频率由原来的0.40 T移动到0.76 T,频率调整度75%,峰值辐射效率约提高70%。该研究工作为后续高功率光导天线太赫兹波辐射的共振中心频点以及结构设计奠定重要基础。
  • 图  1  S型微结构光电导天线结构示意图

    Figure  1.  Schematic diagram of S-shaped PCA structure

    图  2  微结构光导天线等效电路图

    Figure  2.  Equivalent circuit diagram of the microstructured PCA

    图  3  光生电流的时域波形

    Figure  3.  Time domain waveform of the photo-generated current

    图  4  SRR结构与工形天线的远场时域波形对比图

    Figure  4.  Comparison of the far-field time-domain waveform of split ring resonator (SRR) structure and H-shaped antenna

    图  5  SRR结构与工形天线的远场频域波形对比图

    Figure  5.  Comparison of the far-field frequency-domain waveform of SRR structure and H-shaped antenna

    图  6  不同耦合系数情况下归一化的天线辐射功率谱

    Figure  6.  Normalized antenna radiation power spectra with different coupling coefficient

    图  7  微结构光导天线的不同耦合强度辐射功率谱

    Figure  7.  Radiation power spectra of different coupling strength of micro-structure PCA

    图  8  不同结构参数下S形天线的时域波形

    Figure  8.  Time domain waveforms of s-shaped antenna with different structural parameters

    图  9  不同结构参数下S形天线的辐射频域谱

    Figure  9.  Radiation spectra of s-shaped antenna with different structural parameters

    表  1  数值仿真模拟实验物理与工作参数

    Table  1.   Physical and working parameters of the numerical simulation experiment

    parametersymbolvalueunit
    absolute temperature$T$ 300 K
    laser wavelength$\lambda $ 800 nm
    optical absorption coefficient$\alpha $ 10 000 cm−1
    carrier relaxation time${\tau _{\rm{s}}}$ 30 fs
    delay time of Gaussian pulse${t_0}$ 4 ps
    carrier lifetime${\tau _{\rm{c}}}$ 0.1 ps
    electron mobility$\;{\mu _{\rm{n}}}$ 200 cm2·V−1·s−1
    carrier recombination time${\tau _{{\rm{rec}}}}$ 10 ps
    semiconductor dielectric constant$\varepsilon $ 13.18
    bias voltage${V_{\rm{b}}}$ 60 V
    repetition frequency${f_{{\rm{rep}}}}$ 80 MHz
    laser pulse width${\tau _{\rm{p}}}$ 120 fs
    geometric factor$\xi $ 3
    thickness of the substrate${T_{\rm{h}}}$ 20 µm
    下载: 导出CSV

    表  2  光电导天线结构与结构计算区域参数

    Table  2.   Structure parameters for PCA and structure calculation area

    parametersymbolvalueunit
    length of structure calculation area${L_x}$ 240 µm
    width of structure calculation area${L_y}$ 240 µm
    thickness of structure calculation area${L_z}$ 80 µm
    width of antenna metal$W$ 10 µm
    ground thickness${h_{\rm{m}}}$ 5 µm
    length of biased lines of s-shaped antenna${S_1}$ 250 µm
    separation of biased lines and microstructure of s-shaped antenna${S_2}$ 10 µm
    distance between microstructure and antenna electrode${S_3}$ 20,30,40 µm
    photoconductive gap${S_4}$ 10 µm
    separation between the lines${S_5}$ 50 µm
    下载: 导出CSV
  • [1] Zhang J, Tuo M, Liang M, et al. Contribution assessment of antenna structure and in-gap photocurrent in terahertz radiation of photoconductive antenna[J]. Journal of Applied Physics, 2018, 124: 053107. doi: 10.1063/1.5038341
    [2] Nissiyah G J, Madhan M G. Graphene-based photoconductive antenna structures for directional terahertz emission[J]. Plasmonics, 2019, 14(4): 891-900. doi: 10.1007/s11468-018-0871-7
    [3] Bowman T, El-Shenawee M. Nondestructive imaging of packaged microelectronics using pulsed terahertz technology[J]. Int Symp Microelectron, 2017(1): 709-714.
    [4] Cheon H, Yang H, Lee S, et al. Terahertz molecular resonance of cancer DNA[J]. Scientific Reports, 2016, 6(1): 37103. doi: 10.1038/srep37103
    [5] Davies A G, Burnett A D, Fan W, et al. Terahertz spectroscopy of explosives and drugs[J]. Materials Today, 2008, 11(3): 18-26. doi: 10.1016/S1369-7021(08)70016-6
    [6] Gowen A A, O’Sullivan C, O’Donnell C P. Terahertz time domain spectroscopy and imaging: Emerging techniques for food process monitoring and quality control[J]. Trends in Food Science & Technology, 2012, 25(1): 40-46.
    [7] O’Hara J F, Chen H T, Taylor A J, et al. Split-ring resonator enhanced terahertz antenna[J]. Nonlinear Optics: Materials, Fundamentals and Applications, 2007, TuB2.
    [8] Takano K, Chiyoda Y, Nishida T, et al. Optical switching of terahertz radiation from meta-atom-loaded photoconductive antennas[J]. Applied Physics Letters, 2011, 99: 161114. doi: 10.1063/1.3654156
    [9] Miyamaru F, Saito Y, Takeda M W, et al. Emission of terahertz radiations from fractal antennas[J]. Applied Physics Letters, 2009, 95: 221111. doi: 10.1063/1.3271181
    [10] Zhisheng Piao M T A K. Carrier dynamics and terahertz radiation in photoconductive antennas[J]. Japanese Journal of Applied Physics, 2000, 39(96): 96-100.
    [11] Lee Y S. Principles of terahertz science and technology[M]. New York: Springer Science & Business Media, 2009.
    [12] Ma C, Yang L, Dong C, et al. An experimental study on LT-GaAs photoconductive antenna breakdown mechanism[J]. IEEE Trans Electron Devices, 2018, 65(3): 1043-1047. doi: 10.1109/TED.2018.2790920
    [13] Moreno E, Sohrabi R, Klochok G, et al. Vertical versus planar pulsed photoconductive antennas that emit in the terahertz regime[J]. Optik, 2018, 166: 257-269. doi: 10.1016/j.ijleo.2018.03.096
    [14] Malhotra I, Thakur P, Pandit S, et al. Analytical framework of small-gap photoconductive dipole antenna using equivalent circuit model[J]. Optical and Quantum Electronics, 2017, 49(10).
    [15] Prajapati J, Bharadwaj M, Chatterjee A, et al. Circuit modeling and performance analysis of photoconductive antenna[J]. Optics Communications, 2017, 394: 69-79. doi: 10.1016/j.optcom.2017.03.004
    [16] Castañeda-Uribe O A, Criollo C A, Winnerl S, et al. Comparative study of equivalent circuit models for photoconductive antennas[J]. Optics Express, 2018, 26(22): 29017. doi: 10.1364/OE.26.029017
    [17] Liang H, Shi S, Ma L. Coupled-mode theory of nonparallel optical waveguides[J]. Journal of Lightwave Technology, 2007, 25(8): 2233-2235. doi: 10.1109/JLT.2007.899783
    [18] Torkaman P, Darbari S, Mohammad-Zamani M J. Design and simulation of a piezotronic GaN-based pulsed THz emitter[J]. Journal of Lightwave Technology, 2018, 36(17): 3645-3651. doi: 10.1109/JLT.2018.2844219
    [19] Khorshidi M, Dadashzadeh G. Dielectric structure with periodic strips for increasing radiation power of photoconductive antennas: Theoretical analysis[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(5): 609-629. doi: 10.1007/s10762-016-0354-x
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1447
  • HTML全文浏览量:  407
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-16
  • 修回日期:  2019-12-27
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回