留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
杨际森, 潘卫民, 王洪磊, 等. 超导腔数字自激垂直测试系统[J]. 强激光与粒子束, 2020, 32: 045106. doi: 10.11884/HPLPB202032.190320
引用本文: 杨际森, 潘卫民, 王洪磊, 等. 超导腔数字自激垂直测试系统[J]. 强激光与粒子束, 2020, 32: 045106. doi: 10.11884/HPLPB202032.190320
Yang Jisen, Pan Weimin, Wang Honglei, et al. Digital self-excited vertical test system of superconducting cavity[J]. High Power Laser and Particle Beams, 2020, 32: 045106. doi: 10.11884/HPLPB202032.190320
Citation: Yang Jisen, Pan Weimin, Wang Honglei, et al. Digital self-excited vertical test system of superconducting cavity[J]. High Power Laser and Particle Beams, 2020, 32: 045106. doi: 10.11884/HPLPB202032.190320

超导腔数字自激垂直测试系统

doi: 10.11884/HPLPB202032.190320
基金项目: 国家自然科学基金项目(11805216)
详细信息
    作者简介:

    杨际森(1992—),男,博士研究生,从事超导腔垂直测试研究;yangjisen@ihep.ac.cn

    通讯作者:

    米正辉(1986—),男,博士,从事射频超导研究;mizh@ihep.ac.cn

  • 中图分类号: TL503.2

Digital self-excited vertical test system of superconducting cavity

  • 摘要:

    基于数字自激算法设计并实现的超导腔垂直测试系统提高了超导腔的垂直测试效率,为先进光源技术研发与测试平台(PAPS)的超导腔批量化生产提供了重要保障;垂直测试系统的射频前端和时钟分配系统采用了二次上下变频方案,可以在一定范围内灵活设置测试系统自激环路的工作频率,增大了该测试系统的工作带宽。利用此系统完成了1.3 GHz 9-cell超导腔的通带频率测试,结果表明,该测试系统能有效避免不同模式之间的串扰,具备较强的频率分辨能力(<800 kHz),保证多单元超导腔性能验证的进行。

  • 图  1  自激环路原理

    Figure  1.  Schematic of the self-excited loop

    图  2  第一次和第二次上下变频原理图

    Figure  2.  Schematic of the first and the second up-and-down frequency conversion

    图  3  数字信号处理算法

    Figure  3.  Scheme of digital signal processing

    图  4  坐标旋转示意图

    Figure  4.  Diagram of coordinate rotation

    图  5  射频前端线性度测量

    Figure  5.  Measurement results of radio frequency front end

    图  6  数字自激系统运行过程中Pickup信号的波形图

    Figure  6.  Free running self-excited loop

    图  7  场衰减时间测量

    Figure  7.  Decay time measurement

    图  8  1.3 GHz 9单元超导腔通带模式频率

    Figure  8.  Pass-band mode frequency of 1.3 GHz 9-cell cavity

    表  1  1.3 GHz 9单元超导腔通带频率测试

    Table  1.   Pass-band mode frequency of 1.3 GHz 9-cell superconducting cavity

    modefrequency/MHz
    temperature is 298.15 Ktemperature is 2 K
    π/91 275.515 801 277.384 00
    2π/91 278.776 201 280.695 08
    3π/91 281.090 201 283.006 44
    4π/91 282.928 401 284.837 76
    5π/91 287.449 801 289.295 32
    6π/91 291.568 201 293.490 92
    7π/91 295.010 601 296.945 96
    8π/91 297.301 201 299.237 56
    π1 298.076 001 300.017 72
    下载: 导出CSV
  • [1] Powers T. Theory and practice of cavity RF test system[C]//Proceedings of the 12th International Workshop on RF Superconductivity. 2005: 40-70.
    [2] Delayen J R. Phase and amplitude stabilization of superconducting resonators[D]. California: California Institute of Technology, 1978: 1-16.
    [3] Allison T, Delayen J R, Hovater C, et al. A digital self excited loop for accelerating cavity field control[C]//Proceedings of PAC07. 2007: 2481-2483.
    [4] Goryashko V A, Bhattacharyya A K, Li Han, et al. A method for high-precision characterization of the Q-slope of superconducting RF cavities[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(11): 3764-3771. doi: 10.1109/TMTT.2016.2605671
    [5] Nicander H. Electro-acoustic stability of a superconducting spoke cavity[D]. Sweden: Uppsala University, 2015: 31-37.
    [6] 张娟, 戴建枰, 黄泓, 等. 基于Labview 的超导腔测试数据采集系统[J]. 核电子学与探测技术, 2013, 33(9):1098-1103. (Zhang Juan, Dai Jianping, Huang Hong, et al. Data acquisition system of superconducting cavity test based on Labview[J]. Nuclear Electronics & Detection Technology, 2013, 33(9): 1098-1103 doi: 10.3969/j.issn.0258-0934.2013.09.014
    [7] 常玮. 低beta超导腔体的测试研究[D]. 兰州: 中国科学院近代物理研究所, 2014: 62-68.

    Chang Wei. Research on low beta superconducting cavity testing[D]. Lanzhou: Institute of Modern Physics, Chinese Academy of Sciences, 2014: 62-68
    [8] 邱丰. 1.3 GHz 9-cell腔数字化低电平系统的研究[D]. 北京: 中国科学院高能物理研究所, 2012: 76-77.

    Qiu Feng. Study on the digital low level RF control system of 1.3 GHz nine-cell cavity[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2012: 76-77
    [9] 张志刚. 同步辐射光源增强其高频数字化低电平系统研制[D]. 上海: 中国科学院 上海应用物理研究所, 2015: 68-72.

    Zhang Zhigang. Development of digital low level RF system for booster at Synchrotron Radiation Light Source[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2015: 68-72
    [10] Holzbauer J P, Pischalnikov Y, Sergatskov D A, et al. Systematic uncertainties in RF-based measurement of superconducting cavity quality factors[J]. Nuclear Instruments and Methods in Physics Research A, 2016, 830: 22-29. doi: 10.1016/j.nima.2016.05.025
    [11] Holzbauer J P, Contreras C, Pischalnikov Y, et al. Improved RF measurements of SRF cavity quality factors[J]. Nuclear Instruments and Methods in Physics Research A, 2019, 913: 7-14. doi: 10.1016/j.nima.2018.09.155
    [12] 刘亚萍. BEPCII 500 MHz 铌腔的研制[D]. 北京: 中国科学院高能物理研究所, 2011: 94-95.

    Liu Yaping. Study of BEPCII 500 MHz niobium cavity[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2011: 94-95
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1763
  • HTML全文浏览量:  660
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-28
  • 修回日期:  2019-12-12
  • 刊出日期:  2020-03-06

目录

    /

    返回文章
    返回