留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preliminary exploration of MagLIF concept and feasibility analysis on PTS facility

Zhao Hailong Wang Ganghua Wang Qiang Zhang Hengdi Xiao Bo Kan Mingxian Yang Long

赵海龙, 王刚华, 王强, 等. 磁化套筒惯性聚变初步探索研究与实验可行性分析[J]. 强激光与粒子束, 2020, 32: 062002. doi: 10.11884/HPLPB202032.190352
引用本文: 赵海龙, 王刚华, 王强, 等. 磁化套筒惯性聚变初步探索研究与实验可行性分析[J]. 强激光与粒子束, 2020, 32: 062002. doi: 10.11884/HPLPB202032.190352
Zhao Hailong, Wang Ganghua, Wang Qiang, et al. Preliminary exploration of MagLIF concept and feasibility analysis on PTS facility[J]. High Power Laser and Particle Beams, 2020, 32: 062002. doi: 10.11884/HPLPB202032.190352
Citation: Zhao Hailong, Wang Ganghua, Wang Qiang, et al. Preliminary exploration of MagLIF concept and feasibility analysis on PTS facility[J]. High Power Laser and Particle Beams, 2020, 32: 062002. doi: 10.11884/HPLPB202032.190352

磁化套筒惯性聚变初步探索研究与实验可行性分析

doi: 10.11884/HPLPB202032.190352
详细信息
  • 中图分类号: O539

Preliminary exploration of MagLIF concept and feasibility analysis on PTS facility

Funds: National Natural Science Foundation of China (11205145, 11605189)
More Information
    Author Bio:

    Zhao Hailong (1985—), male, PhD candidate, engaged in numerical simulation of Z-pinch and pulsed power system; ifp.zhaohailong@qq.com

  • 摘要: 磁化套筒惯性聚变(MagLIF)构型可充分利用现有大型脉冲功率驱动装置,如聚龙一号等。基于磁流体力学方程组和1∶1比例氘氚(DT)混合燃料聚变模型,开发了零维MagLIF数值模拟程序并进行了初步探索研究。计算结果表明初始负载参数(如轴向磁场强度,预加热温度、时刻,负载半径等)与聚变产额之间有着密切的联系,在给定条件下,可依据计算给出的定性关系进行负载优化设计。值得注意的是,根据计算结果,即使在理想条件下,氘氚燃料要实现能量收支平衡,则驱动器的电流必须大于21.2 MA。这意味着聚龙一号装置(10 MA)无法开展集成化的MagLIF实验,进一步的校验计算验证了上述观点,并在此基础上提出铝套筒分解实验的建议和负载设计参数。所取得的计算结果有利于加深对MagLIF套筒压缩阶段物理过程的认知和理解。
  • Figure  1.  Schematic of MagLIF process, including three main stages

    Figure  2.  Demonstration of curves used in calculations: current curve from Ref.[13], trajectory of inner surface of liner, and time of laser preheat

    Figure  3.  Curves of fusion parameters Br, temperature and pressure evolving with time calculated by MagLIF-0D

    Figure  4.  Schematics of calculated results from MagLIF-0D code; (a) fusion yield and internal energy, (b) energy power transport evolving as initial axial field increases

    Figure  5.  Schematics of calculated results from MagLIF-0D code: (a) fusion yield and internal energy, (b) energy power transport evolving as preheat temperature increases

    Figure  6.  Schematic of energy ratio evolving with preheat temperature

    Figure  7.  Schematic of fusion yield and internal energy evolving with preheating time

    Figure  8.  Schematic of fusion and internal energy curves evolved with liner aspect ratio (AR)

    Figure  9.  Schematic of fusion yield and internal energy curves evolved with initial liner outer radius (R0)

    Figure  10.  Schematic of six current curves used as input driving sources in MagLIF-0D code

    Figure  11.  Schematic of fusion and internal energy curves evolving with maximum driving current

    Figure  12.  Schematic of energy gain (fusion yield divided by fuel internal energy) evolving with maximum driving current

    Figure  13.  Schematic of different current curves used to explore feasibility of MagLIF on PTS facility

    Table  1.   Comparisons between results calculated by MagLIF-0D, LASNEX and HYDRA codes

    codedensity/(g/cm3)temperature/keVmagnetic field/Tcompression ratiopeak pressure/(1014 Pa)fusion yield/kJ
    LASNEX0.5813 500233500
    MagLIF-0D0.557.54 000153400
    HYDRA1.06−88 000−10 000225560
    下载: 导出CSV

    Table  2.   Comparison between results calculated by MagLIF-0D code with different magnetizing fields

    Bz0/Tyield/(kJ/cm)Efuel/(kJ/cm)GpdV/(TW/cm)Gα/(TW/cm)Lrad/(TW/cm)Lcond/(TW/cm)ρ/(g/cm3)CRBf/103TT/keV
    09312416213.549.2126.003.0032.002.2
    1067738718312321.36.000.6915.01.66.7
    2079042518313818.91.500.5814.02.77.3
    3080743218013717.90.600.5513.53.97.5
    4080543518013517.40.380.5313.55.07.5
    5076843817412517.00.240.5113.06.07.4
    6071041516411216.00.150.4912.57.07.2
    下载: 导出CSV

    Table  3.   Comparisons between results calculated by MagLIF-0D code with different preheat temperatures

    T0/eVyield/(kJ/cm)Efuel/(kJ/cm)GpdV/(TW/cm)Gα/(TW/cm)Lrad/(TW/cm)Lcond/(TW/cm)ρ/(g/cm3)CRBf/103TT/keV
    508512388.720.041.01.102.3428.09.82.1
    100265230141.055.528.90.861.0020.06.84.0
    150456312162.090.024.00.730.8617.05.55.4
    200644380174.0120.020.50.670.6815.04.66.5
    250807432180.0137.017.90.600.5513.53.97.5
    300945475181.0146.015.60.620.4612.43.48.2
    3501087517182.0157.014.10.620.4011.53.09.0
    下载: 导出CSV

    Table  4.   Comparisons between results calculated by MagLIF-0D code with different preheat time

    theat/nsyield/(kJ/cm)Efuel/(kJ/cm)GpdV/(TW/cm)Gα/(TW/cm)Lrad/(TW/cm)Lcond/(TW/cm)ρ/(g/cm3)CRBf/103TT/keV
    054535815285.316.80.60.56513.7346.2
    43.872040818011917.70.650.56213.6847
    69.380743218013717.90.60.5513.53.97.5
    87.75733601439017.50.650.58713.9846.3
    98.633026610848.418.10.760.7115.394.44.6
    下载: 导出CSV

    Table  5.   Comparisons between results calculated by MagLIF-0D code with different aspect ratio (AR)

    ARyield/(kJ/cm)Efuel/(kJ/cm)GpdV/(TW/cm)Gα/(TW/cm)Lrad/(TW/cm)Lcond/(TW/cm)ρ/(g/cm3)CRBf/103TT/keV
    218210821.413.43.90.50.411.53.35.2
    460231610275.412.50.60.512.93.66.7
    680743218013717.90.60.5513.53.97.5
    877847522715019.60.60.5513.53.87.5
    1068748725414119.80.60.5313.33.77.2
    下载: 导出CSV

    Table  6.   Comparisons between results calculated by MagLIF-0D code with different initial liner radius

    R0/mmyield/(kJ/cm)Efuel/(kJ/cm)GpdV/(TW/cm)Gα/(TW/cm)Lrad/(TW/cm)Lcond/(TW/cm)ρ/(g/cm3)CRBf/103TT/keV
    2.1490286179120130.80.6314.54.28.2
    2.471237320015316.50.760.6214.34.18.2
    2.780743218013717.90.60.5513.53.97.5
    3.063142612472.515.60.540.43123.26.0
    3.332236454.217.110.30.40.269.42.03.8
    下载: 导出CSV

    Table  7.   Comparisons between results calculated by MagLIF-0D code with different driving current

    Imax/MAyield/(kJ/cm)Efuel/(kJ/cm)GpdV/(TW/cm)Gα/(TW/cm)Lrad/(TW/cm)Lcond/(TW/cm)ρ/(g/cm3)CRBf/103TT/keV
    2020324455.616.57.60.50.3110.12.14.2
    2780743218013717.90.60.5513.53.97.5
    352490708394696320.80.816.35.712.3
    404800965564167442.20.970.9317.66.716.7
    4597761393744390052.21.11.0518.77.624
    503579031289071285061.31.31.1419.58.354
    下载: 导出CSV

    Table  8.   Calculated results by MagLIF-0D code with different parameters using method of exhaustion

    B0/TT0/eVρ0/(mg/cm3)R0/mmARQ/%yield(kJ/cm)Efuel(kJ/cm)ρ(g/cm3)CRBf/103TT/keV
    3025031.64618.37.943.20.146.90.842
    1015031.64613.83.827.50.3310.50.511.3
    302501.51.646279.45350.128.81.23.3
    302501.51.64424.15.623.20.108.30.962.7
    302501.51.64826.211.242.70.129.21.383.6
    302501.51.641024.611.647.10.139.41.43.8
    302501.51.8624.18.9370.181.032.9
    302501.51.5629.19.432.30.149.61.43.6
    302501.51.2628.36.5230.1810.91.64
    302501.51.56628.39.5533.70.139.31.33.5
    302501.01.566339.3728.40.1110.51.54.4
    302501.01.566351439.60.1610.31.614.1
    下载: 导出CSV
  • [1] Aymar R. The ITER project[J]. IEEE Trans Plasma Science, 1997, 6: 1187.
    [2] Shimomura Y, Spears W. Review of the ITER project[J]. IEEE Trans Plasma Science, 2004, 14: 1369.
    [3] Huang Chuanjun, Li Laifeng. Magnetic confinement fusion: A brief review[J]. Front Energy, 2018, 12: 305. doi: 10.1007/s11708-018-0539-1
    [4] Hurricane O A, Springer P T, Patel P K, et al. Approaching a burning plasma on the NIF[J]. Phys Plasmas, 2019, 26: 052704. doi: 10.1063/1.5087256
    [5] McCrory R L, Meyerhofer D D, Betti R, et al. Progress in direct-drive inertial confinement fusion[J]. Phys Plasmas, 2008, 15: 055503. doi: 10.1063/1.2837048
    [6] Mordecai D R, Meyerhofer1 D D, Betti R, et al. The physics issues that determine inertial confinement fusion target gain and driver requirements: A tutorial[J]. Phys Plasmas, 1999, 6: 1690. doi: 10.1063/1.873427
    [7] Thio Y C F, Panarella E, Knupp C E, et al. Magnetized target fusion in a spheroidal geometry with standoff drivers[C]//The 2nd Conference on Current Trends in International Fusion Research. 1999: 113.
    [8] Parks P B. On the efficacy of imploding plasma liners for magnetized fusion target compression[J]. Phys Plasmas, 2008, 15: 062506. doi: 10.1063/1.2948346
    [9] Cassibry J T, Stanic M, Hsu S C, et al. Tendency of spherically imploding plasma liners formed by merging plasma jets to evolve toward spherical symmetry[J]. Phys Plasmas, 2012, 19: 052702. doi: 10.1063/1.4714606
    [10] Schoenberg K F, Siemon R E. Magnetized target fusion: A proof-of-principle research proposal[R]. LA-UR-98-2413,1998.
    [11] Kirkpatrick R C. Magnetized target fusion (MTF) principle status and international collaboration[C]//Latin America Workshop on Plasma Physics. 1998.
    [12] Lindemuth I R, Kirkpatrick R C. Parameter space for magnetized fuel targets in inertial confinement fusion[J]. Nucl Fusion, 1983, 23: 263. doi: 10.1088/0029-5515/23/3/001
    [13] Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Phys Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505
    [14] Slutz S A, Roger A V. High-gain magnetized inertial fusion[J]. Phys Rev Lett, 2012, 108: 025003. doi: 10.1103/PhysRevLett.108.025003
    [15] McBride R D, Martin M R, Lemke R W, et al. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion[J]. Phys Plasmas, 2013, 20: 056309. doi: 10.1063/1.4803079
    [16] Gomez M R, Slutz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Phys Rev Lett, 2014, 113: 155003. doi: 10.1103/PhysRevLett.113.155003
    [17] Awe T J, Jennings C A, McBride R D, et al. Modified helix-like instability structure on imploding z-pinch liners that are preimposed with a uniform axial magnetic field[J]. Phys Plasmas, 2014, 21: 056303. doi: 10.1063/1.4872331
    [18] Sefkow A B, Slutz S A, Koning J M, et al. Design of magnetized liner inertial fusion experiments using the Z facility[J]. Phys Plasmas, 2014, 21: 072711. doi: 10.1063/1.4890298
    [19] McBride R D, Slutz S A. A semi-analytic model of magnetized liner inertial fusion[J]. Phys Plasmas, 2015, 22: 052708. doi: 10.1063/1.4918953
    [20] Feng Shuping, Li Hongtao, Xie Weiping, et al. Development of prototype module of Z-pinch primary test stand[J]. High Power Laser and Particle Beams, 2009, 21(3): 463-467.
    [21] Zhao Hailong, Deng Jianjun, Wang Ganghua, et al. Load optimal design for a primary test stand facility based on a zero-dimensional load model[J]. Chinese Phys B, 2011, 20: 105201. doi: 10.1088/1674-1056/20/10/105201
    [22] Deng Jianjun, Wang Meng, Xie Weiping, et al. Super-power repetitive Z-pinch driver for fusion-fission reactor[J]. High Power Laser and Particle Beams, 2014, 26: 100201. doi: 10.3788/HPLPB20142610.100201
    [23] Zhao Hailong, Zhang Hengdi, Wang Ganghua, et al. Design and verification of 1D magnetized linear inertial fusion simulation code[J]. High Power Laser and Particle Beams, 2017, 29: 072001. doi: 10.11884/HPLPB201729.170002
    [24] Freidberg J. Plasma Physics and fusion energy[M]. Beijing: Science Press, 2010.
    [25] Basko M M, Kemp A J, Meyer-ter-Vehn J. Ignition conditions for magnetized target fusion in cylindrical geometry[J]. Nuclear Fusion, 2000, 40: 59-68. doi: 10.1088/0029-5515/40/1/305
  • 加载中
图(13) / 表(8)
计量
  • 文章访问数:  1806
  • HTML全文浏览量:  650
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-12
  • 修回日期:  2020-02-13
  • 刊出日期:  2020-05-12

目录

    /

    返回文章
    返回