Characteristics analysis of electrohydraulic shockwave
-
摘要:
基于相应的数学模型来表征液电脉冲激波的产生和传播过程,搭建了液电式碎岩综合试验平台,分析了典型的激波特性的仿真和实测结果。给出了不同充电电压下液电脉冲激波特性的仿真结果,并分析了充电电压对激波特性的影响。结果表明:充电电压为11 kV时,激波的压力峰值为2.67 MPa,激波能量为27.30 J,波前时间为2.16 μs,激波加载速率为1.24 MPa/μs,电能转化为激波能量的效率为13.35%;提高电容充电电压,激波压力峰值和激波能量增大,波前时间减少,激波加载速率增加,但电能转化为激波能量的效率降低。利用建模分析的方法,可以根据放电回路参数预测液电脉冲激波特性,从而为进一步研究激波破碎岩石的形态和效果提供理论依据。
Abstract:Characteristics of electrohydraulic shockwave are the keys to the application of electrohydraulic disintegration of rocks (EHDR). Mathematical models are used to characterize the generation and propagation of the shockwave, an integrated experimental platform is established, the measured and simulated results of typical shockwave characteristics are analyzed. The simulated results of characteristics of shockwaves under different charge voltage are given, and the influence of charge voltage on the shockwave characteristics are analyzed. The results show that the peak pressure and energy of shockwave is 2.67 MPa and 27.30 J respectively, the wave front time is 2.16 μs, the loading rate is 1.24 MPa/μs, when the charge voltage is 11 kV. The peak value and energy of shockwaves increase, the wave front time decreases, the loading rate of shockwaves increases, while the efficiency of electrical energy transfer into shockwave energy decreases, when the charge voltage of capacitor rises. Characteristics of shockwaves can be predicted from the parameters of discharge circuit via simulation, thus to provide theoretical basis for further study on the morphology and effect of EHDR.
-
表 1 典型激波特性实测与仿真结果
Table 1. Measured and simulated results of typical shockwave characteristics
shockwave characteristics Ppeak / MPa tr /μs v / (MPa/μs) Esw/ J measurement 3.29 2.71 1.21 40.04 simulation 3.31 1.74 1.90 42.46 -
[1] 张瑞强, 刘少军, 胡琼. 利用脉冲功率技术开采海底富钴结壳的试验研究[J]. 强激光与粒子束, 2017, 29:065008. (Zhang Ruiqiang, Liu Shaojun, Hu Qiong. Experimental investigation of exploring marine co-rich crust using pulse power techniques[J]. High Power Laser and Particle Beams, 2017, 29: 065008 [2] 付荣耀, 孙鹞鸿, 樊爱龙, 等. 高压电脉冲在页岩气开采中的压裂实验研究[J]. 强激光与粒子束, 2016, 28:079001. (Fu Rongyao, Sun Yaohong, Fan Ailong, et al. Research of rock fracturing based on high voltage pulse in shale gas drilling[J]. High Power Laser and Particle Beams, 2016, 28: 079001 [3] 施逢年. 矿石的高压电脉冲预处理技术研究进展——昆士兰大学JK矿物中心10余年成果回顾[J]. 金属矿山, 2019(5):1-8. (Shi Fengnian. Progress on high voltage pulse technology used for ore pre-treatment——Overview of the research outcomes made by the Julius Kruttschnitt Mineral Research Centre of the University of Queensland in the past 10 years[J]. Metal Mine, 2019(5): 1-8 [4] 李昌平, 契霍特金 V F, 段隆臣. 电脉冲破岩钻进技术研究进展[J]. 地质科技情报, 2018, 37(6):298-304. (Li Changping, Chikhotkin V F, Duan Longcheng. Research progress of electro pulse boring rock breaking technology[J]. Geological Science and Technology Information, 2018, 37(6): 298-304 [5] 付荣耀, 孙鹞鸿, 刘坤, 等. 大水泥岩样的电脉冲压裂实验研究[J]. 强激光与粒子束, 2018, 30:045007. (Fu Rongyao, Sun Yaohong, Liu Kun, et al. Experimental study of fracturing under electric pulse for large cement sample[J]. High Power Laser and Particle Beams, 2018, 30: 045007 [6] 张永民, 邱爱慈, 秦勇. 电脉冲可控冲击波煤储层增透原理与工程实践[J]. 煤炭科学技术, 2017, 45(9):79-85. (Zhang Yongmin, Qiu Aici, Qin Yong. Principle and engineering practices on coal reservoir permeability improved with electric pulse controllable shock waves[J]. Coal Science and Technology, 2017, 45(9): 79-85 [7] Martin E A. Experimental investigation of a high-energy density, high-pressure arc plasma[J]. Journal of Applied Physics, 1960, 31(2): 255-267. doi: 10.1063/1.1735555 [8] Sun B, Kunitomo S, Igarashi C. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water[J]. Journal of Physics D: Applied Physics, 2006, 39(17): 3814-3820. doi: 10.1088/0022-3727/39/17/016 [9] Timoshkin I V, Fouracre R A, Given M J, et al. Hydrodynamic modelling of transient cavities in fluids generated by high voltage spark discharges[J]. Journal of Physics D: Applied Physics, 2006, 39(22): 4808-4817. doi: 10.1088/0022-3727/39/22/011 [10] Axel W H K. Pulsed power discharges in water[D]. California: California Institute of Technology, 1996. [11] Liu S W, Liu Y, Lin F C, et al. Influence of plasma channel impedance model on electrohydraulic shockwave simulation[J]. Physics of Plasmas, 2019, 26: 023522. doi: 10.1063/1.5064847 [12] 王一博. 水中等离子体声源的理论与实验研究[D]. 长沙: 国防科技大学, 2012.Wang Yibo. Theoretical and experimental study of the underwater plasma acoustic source[D]. Changsha: Graduate School of National University of Defense Technology, 2012 [13] 贾少华, 赵金昌, 尹志强, 等. 基于高压电脉冲煤体增透的水激波波前时间变化规律研究[J]. 太原理工大学学报, 2015, 46(6):680-684, 690. (Jia Shaohua, Zhao Jinchang, Yin Zhiqiang, et al. Research on change laws of front time in water shock-wave based on pulsed high-voltage discharge in permeability enhancement in coal seams[J]. Journal of Taiyuan University of Technology, 2015, 46(6): 680-684, 690 [14] 尹志强, 赵金昌, 贾少华, 等. 基于高压电脉冲的水激波加载特性的实验研究[J]. 煤炭技术, 2016, 35(6):182-185. (Yin Zhiqiang, Zhao Jinchang, Jia Shaohua, et al. Experimental study of water shock load characteristics based on high-voltage pulsed discharge[J]. Coal Technology, 2016, 35(6): 182-185 [15] 李显东, 刘毅, 李志远, 等. 不均匀电场下水中脉冲放电观测及沉积能量对激波的影响[J]. 中国电机工程学报, 2017, 37(10):3028-3036. (Li Xiandong, Liu Yi, Li Zhiyuan, et al. Observation of underwater pulse discharge and influence of deposited energy on shock wave in non-uniform electric field[J]. Proceedings of CSEE, 2017, 37(10): 3028-3036 [16] Li C, Duan L, Tan S, et al. Damage model and numerical experiment of high-voltage electro pulse boring in granite[J]. Energies, 2019, 12(4): 727. doi: 10.3390/en12040727 期刊类型引用(9)
1. 任天佑,严宇,刘康凯,王路伽,祁江浩,王世卓. 适用于煤层瓦斯增透的高压脉冲放电关键技术研究. 电气防爆. 2024(01): 14-20 . 百度学术
2. 刘毅,廖洪彬,程晋,李柳霞,林福昌,赵勇. 脉冲放电破岩等离子体通道长度预测方法. 强激光与粒子束. 2024(05): 151-159 . 本站查看
3. 郭军,米鑫程,冯国瑞,白锦文,文晓泽,朱林俊,王子,皇文博. 基于液电效应的高压电脉冲岩体致裂特征及机理. 煤炭学报. 2024(05): 2270-2282 . 百度学术
4. 金玉静,王大庆,陆皓. GTAW自激发超声工艺对AISI 316不锈钢堆焊层的有效性分析. 热加工工艺. 2024(12): 133-138+144 . 百度学术
5. 马宁,邓岳,凌雪,杨麟睿,钱阳,刘毅,黄仕杰. 高压脉冲放电在大直径扩底灌注桩中的应用技术研究. 钻探工程. 2024(06): 152-159 . 百度学术
6. 赵景林,王志强,王进君,张东东,李国锋. 基于Kriging模型的水中放电沉积能量优化分析. 强激光与粒子束. 2023(03): 149-158 . 本站查看
7. 孙树强,王来东. 改进SPWM脉冲技术的多电平逆变器功率控制仿真. 计算机仿真. 2023(09): 66-69+75 . 百度学术
8. 余庆,张辉,杨睿智. 基于LS-DYNA的液电效应冲击波数值模拟. 爆炸与冲击. 2022(02): 128-139 . 百度学术
9. 康忠健,王聪,聂云良,邵在康,龚大建. 非常规储层电脉冲共振增产技术研究与应用. 强激光与粒子束. 2021(06): 82-87 . 本站查看
其他类型引用(7)
-