留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A novel adjustable aperture for beam current controlling at China-ADS low energy beam transport line

Niu Haihua Li Youtang He Yuan Zhang Bin Wang Zhijun Chen Weilong Yuan Chenzhang Jia Huan

牛海华, 李有堂, 何源, 等. 一种用于C-ADS 低能束流传输线束流强度控制的新型可调限束光阑[J]. 强激光与粒子束, 2020, 32: 054004. doi: 10.11884/HPLPB202032.190393
引用本文: 牛海华, 李有堂, 何源, 等. 一种用于C-ADS 低能束流传输线束流强度控制的新型可调限束光阑[J]. 强激光与粒子束, 2020, 32: 054004. doi: 10.11884/HPLPB202032.190393
Niu Haihua, Li Youtang, He Yuan, et al. A novel adjustable aperture for beam current controlling at China-ADS low energy beam transport line[J]. High Power Laser and Particle Beams, 2020, 32: 054004. doi: 10.11884/HPLPB202032.190393
Citation: Niu Haihua, Li Youtang, He Yuan, et al. A novel adjustable aperture for beam current controlling at China-ADS low energy beam transport line[J]. High Power Laser and Particle Beams, 2020, 32: 054004. doi: 10.11884/HPLPB202032.190393

一种用于C-ADS 低能束流传输线束流强度控制的新型可调限束光阑

doi: 10.11884/HPLPB202032.190393
详细信息
  • 中图分类号: TL5

A novel adjustable aperture for beam current controlling at China-ADS low energy beam transport line

Funds: Strategic Priority Research Program of Chinese Academy of Sciences (XDA21010202)
More Information
    Author Bio:

    Niu Haihua (1987—), female, PhD candidate, engaged in the research on mechanical equipment of linear accelerator; niuhh@impcas.ac.cn

    Corresponding author: He Yuan (1973—), male, PhD, engaged in the research on physics and technology of high power superconducting linear accelerator; hey@impcas.ac.cn
  • 摘要:

    为了实现超导直线加速器束流强度的连续可调,并满足加速器在线稳定可靠运行,针对我国加速器驱动次临界系统(C-ADS)低能束流传输线(LEBT)的束流强度调控,提出了一种新型的可调限束光阑。可调限束光阑采用两个相对旋转的镜像对称转芯,转芯的孔径在某一范围内可以实现连续变化,以刮除不需要的外部粒子,提高束流品质,降低束损,最重要的是可实现束流强度的在线连续可调,并满足圆形束的要求。仿真和试验结果表明,在0~10 mA范围内,可以有效地卡掉不需要的外部粒子束流,并实现束流强度的在线连续调节。该装置为质子直线加速器提供了一种方便的束流调试方法,能够满足ADS直线加速器稳定可靠的在线运行。

  • Figure  1.  The schematic diagram of the core component for adjustable aperture

    Figure  2.  The structure diagram of the adjustable aperture

    Figure  3.  ANSYS simulation result of support

    Figure  4.  Temperature distribution and thermal deformation of the rotating core

    Figure  5.  The envelope diagram and beam reduction of LEBT with adjustable aperture

    Figure  6.  Beam phase space and real space plots at the adjustable aperture

    Figure  7.  The adjustable aperture

    Figure  8.  Test site of the aperture

    Figure  9.  Test results of the aperture

    Table  1.   The beam parameters at the outlet of the LEBT

    parameter/unitbefore scrapingafter scraping
    emittance εx/(π·mm·mrad)0.2070.173
    TWISS αx0.9081.120
    TWISS βx/(mm/π·mrad)0.0470.058
    emittance εy/(π·mm·mrad)0.2070.173
    Twiss αy0.9101.110
    Twiss βy/(mm/π·mrad)0.0470.058
    下载: 导出CSV
  • [1] Zhan Wenlong, Xu Hushan. Advanced fission energy program-ADS transmutation system[J]. Bulletin of Chinese Academy of Sciences, 2012, 27: 375-381.
    [2] Wang Jing, Huang Jian-Long, He Yuan, et al. Multi-physics analysis of the RFQ for Injector SchemeⅡof C-ADS driver linac[J]. Chinese Physics C, 2014, 38(10): 107005. doi: 10.1088/1674-1137/38/10/107005
    [3] Niu Haihua, Li Youtang, He Yuan, et al. The mechanical design and fabrication of 162.5 MHz buncher for China accelerator driven sub-critical system injector II[J]. Nuclear Engineering and Technology, 2017, 49: 1071-1078. doi: 10.1016/j.net.2017.03.003
    [4] Wu Q, Zhang Z M, Sun L T, et al. A 2.45 GHz intense proton source and low energy beam transport system for China Initiative Accelerator Driven Sub-Critical reactor system[J]. Review of Scientific Instruments, 2014, 85: 02A703. doi: 10.1063/1.4824804
    [5] Yang Y, Zhang Z M, Wu Q, et al. A low energy beam transport system for proton beam[J]. Review of Scientific Instruments, 2013, 84: 033306. doi: 10.1063/1.4796096
    [6] Yang Yao, Zhang Zimin, Zhang Wenhui, et al. Study on beam emittance growth induced by spherical aberration of solenoid lens[J]. Atomic Energy Science and Technology, 2013, 47(12): 2336-2340.
    [7] Celona L, Allegra L, Amato A, et al. Preliminary commissioning results of the proton source for ESS at INFN-LNS[C]// Proc of IPAC. 2016: 2628-2631.
    [8] Eshraqi M, Danared H, Jansson A, et al. ESS linac beam physics design update[C]// Proc of IPAC. 2016: 947-950.
    [9] Weissman L, Berkovits D, Arenshtam A, et al. SARAF phase I linac in 2012[J]. Journal of Instrumentation, 2014, 9: T05004.
    [10] Kai D, Florian K, Christian P. Performance of the SARAF ion source[C]// Proc of PAC07, 2007, TUPAN009: 1407-1409.
    [11] Weissman L, Berkovits D, Eliyahu I, et al. The state of the SARAF LINAC Project[C]// Proc of LINAC. 2010: 679-683.
    [12] Wu Qi, Jia Huan, Ma Hongyi, et al. Research of emittance matching on the low energy beam transport line for ADS proton LINAC[J]. Nuclear Physics Review, 2015, 32: 5-9.
    [13] Chen Weilong. LEBT design based on beam loss control[D]. Beijing: University of Chinese Academy of Sciences, 2016
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1175
  • HTML全文浏览量:  455
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-30
  • 修回日期:  2020-02-15
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回