留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S波段高精度快速倒相开关设计

白维达 江涛 熊正锋 蒋自力

白维达, 江涛, 熊正锋, 等. S波段高精度快速倒相开关设计[J]. 强激光与粒子束, 2020, 32: 053002. doi: 10.11884/HPLPB202032.190394
引用本文: 白维达, 江涛, 熊正锋, 等. S波段高精度快速倒相开关设计[J]. 强激光与粒子束, 2020, 32: 053002. doi: 10.11884/HPLPB202032.190394
Bai Weida, Jiang Tao, Xiong Zhengfeng, et al. Design of S-band bi-phase modulator with high speed and accuracy[J]. High Power Laser and Particle Beams, 2020, 32: 053002. doi: 10.11884/HPLPB202032.190394
Citation: Bai Weida, Jiang Tao, Xiong Zhengfeng, et al. Design of S-band bi-phase modulator with high speed and accuracy[J]. High Power Laser and Particle Beams, 2020, 32: 053002. doi: 10.11884/HPLPB202032.190394

S波段高精度快速倒相开关设计

doi: 10.11884/HPLPB202032.190394
详细信息
    作者简介:

    白维达(1992—),男,硕士,主要从事高功率微波技术研究;weida_mail@163.com

  • 中图分类号: TN623

Design of S-band bi-phase modulator with high speed and accuracy

  • 摘要:

    倒相开关是能量倍增器法(SLED)脉冲压缩系统中的关键器件,它的倒相精度和开关速度对脉冲压缩系统的性能有重要影响。设计了一种工作在S波段的精度可调、响应迅速的微带反射式倒相开关,并对其进行了理论分析,电路结构设计和仿真研究。对倒相开关的反射终端进行了改进设计,利用一个变容二极管来代替传统的并联枝节电路,通过调节变容二极管的偏置电压改变反射终端的反射系数,从而实现对倒相相位的精确调节。仿真结果表明,倒相开关响应时间约4 ns,且通过调节变容二极管偏置电压可以在一定范围内调节倒相精度。

  • 图  1  反射式倒相开关电路结构示意图

    Figure  1.  Diagram of reflection type bi-phase shifter

    图  2  新型反射终端结构

    Figure  2.  Diagram of proposed reflection terminal

    图  3  新型倒相开关版图

    Figure  3.  Layout of proposed bi-phase shifter

    图  4  时域仿真结果

    Figure  4.  Simulation results of time domain

    图  5  9 ns时经过倒相和不经过倒相的信号对比

    Figure  5.  Simulation results of signal at 9 ns with and without phase shift

    图  6  S参数仿真结果

    Figure  6.  Simulation results of S-parameter

    图  7  相移量调节仿真结果

    Figure  7.  Simulation results of adjustable accuracy

  • [1] 周传明, 刘国治, 刘永贵, 等. 高功率微波源[M]. 北京: 原子能出版社, 2007.

    Zhou Chuanming, Liu Guozhi, Liu Yonggui, et al. High-power microwave sources[M]. Beijing: Atomic Energy Press, 2007
    [2] Vikharev A L, Petelin M I, Pavelyev V G, et al. High power microwave pulse compressors[C]//4th IEEE International Conference on Vacuum Electronics. 2003: 53.
    [3] Yushkov Y G, Artemenko S N, Novikov S N, et al. Development of microwave pulse compressors[C]//9th Russian-Korean International Symposium on Science and Technology. 2005: 838-842.
    [4] Brown P, Syratchev I. 3 GHz barrel open cavity (BOC) RF pulse compressor for CTF3[C]//IEEE MTT-S International Microwave Symposium. 2004: 1009-1012.
    [5] Artemenko S N, Igumnov V S, Shlapakovsky A S, et al. Compact active S-band microwave compressors for producing rectangular pulses of up to 100ns[J]. IEEE Trans Microwave Theory and Techniques, 2019, 67(2): 597-605. doi: 10.1109/TMTT.2018.2886850
    [6] 熊正锋, 宁辉, 陈怀璧, 等. 一种耦合度可调节的微波脉冲压缩装置设计及实验[J]. 强激光与粒子束, 2018, 30:073001. (Xiong Zhengfeng, Ning Hui, Chen Huaibi, et al. Design and experiment of microwave pulse compressor with adjustable coupling coefficient[J]. High Power Laser and Particle Beams, 2018, 30: 073001 doi: 10.11884/HPLPB201830.170469
    [7] Xiong Z F, Cheng C, Yu J. Switching speed effect of phase shifter keying in SLED for generating high power microwaves[J]. Chinese Physics C, 2016, 40(1): 1-5.
    [8] Farkas Z D, Hogg H A. SLED: A method of doubling SLAC’s energy[R]. SLAC-PUB-1453.
    [9] 沈旭明, 张鹏, 和天慧, 等. 能量倍增器法微波脉冲压缩[J]. 强激光与粒子束, 2010, 22(4):849-852. (Shen Xuming, Zhang Peng, He Tianhui, et al. High power microwave pulse compression of energy doubles[J]. High Power Laser and Particle Beams, 2010, 22(4): 849-852 doi: 10.3788/HPLPB20102204.0849
    [10] Pei S L, Li X P, Xiao O Z. Error and jitter effect studies on the SLED for the BEPCⅡ-linac[J]. Chinese Physics C, 2012, 36(5): 456-463. doi: 10.1088/1674-1137/36/5/014
    [11] Sherman V, Setter N, Tagantsev A, et al. Digital reflection-type phase shifter based on a ferroeletric planar capacitor[J]. IEEE Microwave and Wireless Components Letters, 2001, 11(10): 407-409. doi: 10.1109/7260.959311
    [12] Glance B. A fast low-loss microstrip p-i-n phase shifter[J]. IEEE Trans Microwave Theory and Techniques, 1979, 27(1): 14-16. doi: 10.1109/TMTT.1979.1129551
    [13] Glance B, Amitay N. A fast-switching low-loss 12-GHz microstrip 4-PSK path length modulator[J]. IEEE Trans Communications, 1980, 28(10): 1824-1828. doi: 10.1109/TCOM.1980.1094599
    [14] Chongcheawchamnan M, Bunnjaweht S, Kpogla D. Microwave I-Q vector modulator using a simple technique for compensation of FET parasitics[J]. IEEE Trans Microwave Theory and Techniques, 2002, 50(6): 1642-1646. doi: 10.1109/TMTT.2002.1006428
    [15] Pierret R F. 半导体器件基础[M]. 北京: 电子工业出版社, 2004: 232-244.

    Pierret R F. Semiconductor device fundamentals[M]. Beijing: Publishing House of Electronics Industry, 2004: 232-244
  • 加载中
图(7)
计量
  • 文章访问数:  1239
  • HTML全文浏览量:  404
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-30
  • 修回日期:  2020-02-05
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回