留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于蒙卡模拟的分段γ扫描无源效率刻度方法

郑洪龙 庹先国 苟家元 吴耀 左伟 郭雨非 何琳 刘艳芳 黄聪 阳林锋 刘伟

郑洪龙, 庹先国, 苟家元, 等. 基于蒙卡模拟的分段γ扫描无源效率刻度方法[J]. 强激光与粒子束, 2020, 32: 046002. doi: 10.11884/HPLPB202032.190416
引用本文: 郑洪龙, 庹先国, 苟家元, 等. 基于蒙卡模拟的分段γ扫描无源效率刻度方法[J]. 强激光与粒子束, 2020, 32: 046002. doi: 10.11884/HPLPB202032.190416
Zheng Honglong, Tuo Xianguo, Gou Jiayuan, et al. A passive efficiency calibration method with Monte Carlo simulation in segmented gamma scanning[J]. High Power Laser and Particle Beams, 2020, 32: 046002. doi: 10.11884/HPLPB202032.190416
Citation: Zheng Honglong, Tuo Xianguo, Gou Jiayuan, et al. A passive efficiency calibration method with Monte Carlo simulation in segmented gamma scanning[J]. High Power Laser and Particle Beams, 2020, 32: 046002. doi: 10.11884/HPLPB202032.190416

基于蒙卡模拟的分段γ扫描无源效率刻度方法

doi: 10.11884/HPLPB202032.190416
基金项目: 国家自然科学基金项目(41874213,41604154)
详细信息
    作者简介:

    郑洪龙(1989—),男,博士,助理研究员,从事核辐射探测方法研究;zhenghlswust@126.com

    通讯作者:

    庹先国(1965—),男,博士,教授,从事核技术及应用研究;tuoxg@cdut.edu.cn

  • 中图分类号: TL814

A passive efficiency calibration method with Monte Carlo simulation in segmented gamma scanning

  • 摘要: 针对200 L核废物桶分段γ扫描(SGS)过程中的效率刻度问题,提出了一种效率刻度函数模型,采用MCNP程序计算不同基质密度和γ射线能量条件下的离散断层效率,经过多元非线性回归获取函数参数,从而建立效率刻度函数,实现核废物桶SGS断层效率刻度。对核废物桶样品进行实验分析,结果表明:对于桶内基质分别为密度0.310 g·cm−3的硅酸铝、密度0.595 g·cm−3的木质纤维,桶内核素分别为活度3.110×105 Bq的点源137Cs、活度1.371×105 Bq的点源60Co,在桶内仅有单个点源存在的核素分布极端不均匀情况下,桶内核素活度重建误差在−37.68%~31.52%范围内。本文的方法能够准确有效实现核废物桶SGS断层效率矩阵计算,并确定核废物桶内放射性核素活度,满足实际检测要求。
  • 图  1  核废物桶SGS检测原理

    Figure  1.  SGS measurement of nuclear waste drum

    图  2  HPGe探测器MCNP模型

    Figure  2.  MCNP model of an HPGe detector

    图  3  SGS效率计算模型

    Figure  3.  Calculation model of SGS efficiency

    图  4  断层效率分布

    Figure  4.  Distribution of segment efficiency

    图  5  SGS实验测量

    Figure  5.  SGS experimental measurement

    图  6  点源在桶中位置变化

    Figure  6.  Positions of point source in the drum

    图  7  效率矩阵

    Figure  7.  Efficiency matrices (aluminum silicate sample)

    图  8  两种刻度函数参数下活度重建结果对比

    Figure  8.  Comparison of reconstructed activity with two sets of parameters (F1 and F2 represent parameters calibrated by aluminum silicate and wood fiber respectively, as shown in Table 1)

    表  1  效率刻度函数参数

    Table  1.   Parameters of efficiency function

    calibrating materialspacingparameter
    a1a2a3a4a5a6R2
    aluminum silicate0 layer between detector and segment−8.214−0.322−0.681−0.0340.101−0.6010.998
    1 layer between detector and segment−8.376−0.303−0.870−0.0510.110−0.5640.998
    2 layers between detector and segment−10.094−0.015−2.014−0.0140.2240.3460.996
    wood fiber0 layer between detector and segment−8.152−0.312−0.676−0.0310.102−0.7130.999
    1 layer between detector and segment−8.341−0.293−0.888−0.0470.111−0.6370.998
    2 layers between detector and segment−10.0520.011−2.098−0.0150.2310.2760.996
    下载: 导出CSV

    表  2  137Cs和60Co核素的重建活度和误差

    Table  2.   Reconstructed activities and errors of 137Cs and 60Co

    samples
    No.
    activity in aluminum silicate/Bq(error/%)activity in wood fiber/Bq
    0.662 MeV1.173 MeV1.332 MeV0.662 MeV1.173 MeV1.332 MeV
    1# 2.869×105(−7.74) 1.479×105(7.89) 1.403×105(2.33) 1.938×105(−37.68) 1.119×105(−18.35) 1.102×105(−19.54)
    2# 3.025×105(−2.74) 1.591×105(16.08) 1.532×105(11.77) 2.138×105(−31.25) 1.265×105(−7.68) 1.197×105(−12.6)
    3# 3.096×105(−0.46) 1.646×105(20.08) 1.512×105(10.32) 2.235×105(−28.15) 1.273×105(−7.09) 1.211×105(−11.64)
    4# 3.079×105(−0.99) 1.468×105(7.07) 1.396×105(1.79) 2.129×105(−31.56) 1.239×105(−9.6) 1.199×105(−12.48)
    5# 3.134×105(0.78) 1.582×105(15.39) 1.513×105(10.36) 2.199×105(−29.3) 1.265×105(−7.64) 1.215×105(−11.34)
    6# 3.243×105(4.29) 1.640×105(19.61) 1.568×105(14.34) 2.474×105(−20.44) 1.347×105(−1.7) 1.302×105(−4.93)
    7# 3.445×105(10.78) 1.739×105(26.81) 1.640×105(19.66) 2.972×105(−4.43) 1.567×105(14.35) 1.463×105(6.81)
    8# 3.680×105(18.32) 1.803×105(31.52) 1.745×105(27.24) 3.579×105(15.07) 1.794×105(30.97) 1.708×105(24.65)
    9# 3.316×105(6.63) 1.646×105(20.07) 1.572×105(14.68) 2.670×105(14.13) 1.442×105(5.28) 1.377×105(0.54)
    下载: 导出CSV
  • [1] 刘哲, 张丽. γ射线CT放射性废物桶检测技术综述[J]. CT理论与应用研究, 2014, 23(6):1025-1040. (Liu Zhe, Zhang Li. Review of γ-ray CT for radioactive waste assay[J]. CT Theory and Applications, 2014, 23(6): 1025-1040
    [2] 张全虎. 层析γ扫描(TGS)重建技术的研究[D]. 北京: 中国原子能科学研究院, 2003.

    Zhang Quanhu. Research of tomographic gamma scanning (TGS) reconstruction technique[D]. Beijing: China Institute of Atomic Energy, 2003
    [3] 莫继锋, 李美山, 张存平, 等. SGS技术在放射性固体废物整备检测中的应用[J]. 核电子学与探测技术, 2014, 34(8):950-953. (Mo Jifeng, Li Meishan, Zhang Cunping, et al. Application on the SGS technology in the measurement of radioactive solid waste conditioning[J]. Nuclear Electronics and Detection Technology, 2014, 34(8): 950-953 doi: 10.3969/j.issn.0258-0934.2014.08.008
    [4] 周志波. 桶装核废物快速检测方法研究[D]. 北京: 中国原子能科学研究院, 2007.

    Zhou Zhibo. Research on the analysis method for the fast measurement of nuclear waste with γ spectrum[D]. Beijing: China Institute of Atomic Energy, 2007
    [5] Parker J L. Use of calibration standards and the correction for sample self-attenuation in gamma-ray nondestructive assay[J]. Inorganic Organic Physical & Analytical Chemistry, 1984.
    [6] Prettyman T H, Reilly T D, Miller M C, et al. Advances in nuclear instrumentation for safeguards[R]. LA-UR-96-3757, 1996
    [7] Camp D C, Martz H E, Roberson G P, et al. Nondestructive waste-drum assay for transuranic content by gamma-ray active and passive computed tomography[J]. Nuclear Instruments and Methods in Physics Research A, 2002, 495: 69-83. doi: 10.1016/S0168-9002(02)01315-3
    [8] Hsue S T, Stewart J E. Guide to nondestructive assay standard preparation, criteria, availability and practical considerations[R]. La-13340-Ms, 2000.
    [9] 刘月恒, 屠荆, 仲云红. 环境样品测量中的一种自吸收校正方法研究[C]//全国第5届核仪器及其应用学术会议. 2005.

    Liu Yueheng, Tu Jing, Zhong Yunhong. A method of self-sorption correction for environmental radioactive measurement[C]//Proceedings of the 5th National Conference on Nuclear Instrument & Its Application. 2005
    [10] Bosko A, Geurkov G, Croft S, et al. Advanced approach for calibration of the segmented gamma scanner for the radioassay of drummed waste[C]//2006 IEEE Nuclear Science Symposium Conference Record. 2006: 212-213.
    [11] Nakazawa D, Bronson F, Croft S, et al. The efficiency calibration of non-destructive gamma assay systems using semi-analytical mathematical approaches[C]//WM2010 Conference. 2010.
    [12] 易珂. 中低放射性废物活度无源γ测量实验及模拟计算研究[D]. 上海: 上海交通大学, 2009.

    Yi Ke. Experimental study and simulation of the passive gamma measurement on low-and-intermediate-level radioactive waste[D]. Shanghai: Shanghai Jiao Tong University, 2009
    [13] Liang J H, Jiang S H, Chou G T, et al. A theoretical investigation of calibration methods for radwaste radioactivity detection systems[J]. Applied Radiation and Isotopes, 1996, 47(7): 669-675. doi: 10.1016/0969-8043(96)00031-0
    [14] Bruggeman M, Gerits J, Carchon R. A minimum biased shell-source method for the calibration of radwaste assay systems[J]. Applied Radiation and Isotopes, 1999, 51(3): 255-259. doi: 10.1016/S0969-8043(99)00041-X
    [15] 徐利军, 叶宏生, 张卫东, 等. 分段γ扫描装置校准用桶状标准源的设计[J]. 核技术, 2015, 38:050502. (Xu Lijun, Ye Hongsheng, Zhang Weidong, et al. Design of reference radioactive source of waste drum used in calibration of segmented gamma scan device[J]. Nuclear Techniques, 2015, 38: 050502
    [16] 许淑艳. 蒙特卡罗方法在实验核物理中的应用[M]. 北京: 原子能出版社, 2006.

    Xu Shuyan. Application of Monte Carlo method in nuclear physics experiment[M]. Beijing: Atomic Energy Press, 2006
    [17] Dung T Q. Calculation of the systematic error and correction factors in gamma waste assay system[J]. Annals of Nuclear Energy, 1997, 24(1): 33-47. doi: 10.1016/0306-4549(96)00059-X
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1224
  • HTML全文浏览量:  375
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-29
  • 修回日期:  2019-12-21
  • 刊出日期:  2020-03-06

目录

    /

    返回文章
    返回