留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单隔间内氢气流动分布特性数值模拟与实验验证

戚雄飞 侯丽强 杜政瑀 曹学武

戚雄飞, 侯丽强, 杜政瑀, 等. 单隔间内氢气流动分布特性数值模拟与实验验证[J]. 强激光与粒子束, 2020, 32: 056002. doi: 10.11884/HPLPB202032.190420
引用本文: 戚雄飞, 侯丽强, 杜政瑀, 等. 单隔间内氢气流动分布特性数值模拟与实验验证[J]. 强激光与粒子束, 2020, 32: 056002. doi: 10.11884/HPLPB202032.190420
Qi Xiongfei, Hou Liqiang, Du Zhengyu, et al. Numerical simulation and experimental verification on distribution characteristics of hydrogen flow in single compartment[J]. High Power Laser and Particle Beams, 2020, 32: 056002. doi: 10.11884/HPLPB202032.190420
Citation: Qi Xiongfei, Hou Liqiang, Du Zhengyu, et al. Numerical simulation and experimental verification on distribution characteristics of hydrogen flow in single compartment[J]. High Power Laser and Particle Beams, 2020, 32: 056002. doi: 10.11884/HPLPB202032.190420

单隔间内氢气流动分布特性数值模拟与实验验证

doi: 10.11884/HPLPB202032.190420
基金项目: 国家自然科学基金项目(11675104),国家科技重大专项(2015ZX06004003-002)
详细信息
    作者简介:

    戚雄飞(1993—),男,硕士研究生,从事反应堆严重事故研究,qixiongfei@sjtu.edu.cn

    通讯作者:

    曹学武(1962—),男,教授,从事反应堆安全研究,caoxuewu@sjtu.edu.cn

  • 中图分类号: TL364

Numerical simulation and experimental verification on distribution characteristics of hydrogen flow in single compartment

  • 摘要:

    以局部隔间氢气流动分布特性研究实验装置中的单个隔间作为几何结构,建立小空间内氢气分布数值研究的计算流体动力学分析模型,对不同湍流模型适用性展开讨论分析,通过对比实验数据和模拟数据,给出最优湍流模型的选择,进一步对低质量流量工况下氢气在小空间内的流动分布进行数值模拟。模拟结果表明:在选取的6种两方程湍流模型中,采用Realizable k-ε、RNG k-ε、Standard k-ε湍流模型计算得到的结果与实验值吻合较好,能够准确地反映氢气在小空间内的释放过程和分布情况;低质量流量工况下,氢气主流区域径向范围较小,氢气在容器中上部呈稳定均匀分布。

  • 图  1  装置截面及测点分布图

    Figure  1.  Geometric cross section and distribution of monitoring points

    图  2  三种网格计算结果对比

    Figure  2.  Comparison of three grids’ calculation results

    图  3  氢气质量流量

    Figure  3.  Mass flow rate of hydrogen

    图  4  不同湍流模型计算所得氢气浓度与实验数据对比

    Figure  4.  Comparison between hydrogen concentration calculated by different turbulence models and experiment data

    图  5  各列监测点氢气浓度实验数据与模拟数据对比

    Figure  5.  Comparison of experimental data and simulated data of hydrogen concentration in each column of monitoring points

    表  1  三种网格划分参数

    Table  1.   Meshing parameters of three kinds of grids

    gridnodescellsmaximum skewness
    coarse grid 78 997 14 692 0.401
    middle grid 264 642 65 230 0.414
    fine grid 522 207 132 104 0.413
    下载: 导出CSV
  • [1] Dimmelmeier H, Jürgen E, Movahed M A. Computational validation of the EPR combustible gas control system[J]. Nuclear Engineering and Design, 2012, 249: 118-124. doi: 10.1016/j.nucengdes.2011.08.053
    [2] Deng Jian, Cao Xuewu. A study on implementing a passive autocatalytic recombiner PAR-system in the large-dry containment[J]. Nuclear Engineering and Design, 2008, 238(7): 2554-2560.
    [3] Prasad K, Pitts W M, Yang J C. A numerical study of the release and dispersion of a buoyant gas in partially confined spaces[J]. International Journal of Hydrogen Energy, 2011, 36(8): 5200-5210. doi: 10.1016/j.ijhydene.2011.01.118
    [4] Cariteau B, Brinster J, Tkatschenko I. Experiments on the distribution of concentration due to buoyant gas low flow rate release in an enclosure[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2505-2512. doi: 10.1016/j.ijhydene.2010.04.054
    [5] Cariteau B, Tkatschenko I. Experimental study of the effects of vent geometry on the dispersion of a buoyant gas in a small enclosure[J]. International Journal of Hydrogen Energy, 2013, 38(19): 8030-8038. doi: 10.1016/j.ijhydene.2013.03.100
    [6] Xiao Jianjun, Travis J R. How critical is turbulence modeling in gas distribution simulations of large-scale complex nuclear reactor containment?[J]. Annals of Nuclear Energy, 2013, 56: 227-242. doi: 10.1016/j.anucene.2013.01.016
    [7] Müller C, Hughes E D, Niederauer G F, et al. GASFLOW: A computational fluid dynamics code for gases, aerosols, and combustion, volume 3: Assessment manual[J]. Office of Scientific & Technical Information Technical Reports, 1998.
    [8] Wilkening H, Baraldi D, Heitsch M. CFD simulations of light gas release and mixing in the Battelle Model-Containment with CFX[J]. Nuclear Engineering and Design, 2008, 238(3): 618-626. doi: 10.1016/j.nucengdes.2007.02.042
    [9] Peng Cheng, Tong Lili, Cao Xuewu. Numerical analysis on hydrogen stratification and post-inerting of hydrogen risk[J]. Annals of Nuclear Energy, 2016, 94: 451-460. doi: 10.1016/j.anucene.2016.04.029
    [10] Swain M R, Shriber J, Swain M N. Comparison of hydrogen, natural gas, liquified petroleum gas, and gasoline leakage in a residential garage[J]. Energy & fuels, 1998, 12(1): 83-89.
    [11] Agranat V, Cheng Z, Tchouvelev A. CFD modeling of hydrogen releases and dispersion in hydrogen energy station[C]//Proceedings of the 15th World Hydrogen Energy Conference. 2004.
    [12] Sonnenkalb M, Poss G. The international test programme in the THAI facility and its use for code validation[C]//EUROSAFWE Forum. 2009.
    [13] Schefer R W, Houf W G, Williams T C. Investigation of small-scale unintended releases of hydrogen: Buoyancy effects[J]. International Journal of Hydrogen Energy, 2008, 33(17): 4702-4712. doi: 10.1016/j.ijhydene.2008.05.091
    [14] Houf W, Schefer R. Analytical and experimental investigation of small-scale unintended releases of hydrogen[J]. International Journal of Hydrogen Energy, 2008, 33(4): 1435-1444. doi: 10.1016/j.ijhydene.2007.11.031
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1536
  • HTML全文浏览量:  491
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-01
  • 修回日期:  2019-12-31
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回