留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适用于隧道环境的二元相控阵天线系统

钟选明 张东民 廖成 杜振 熊洁

钟选明, 张东民, 廖成, 等. 适用于隧道环境的二元相控阵天线系统[J]. 强激光与粒子束, 2020, 32: 053006. doi: 10.11884/HPLPB202032.190423
引用本文: 钟选明, 张东民, 廖成, 等. 适用于隧道环境的二元相控阵天线系统[J]. 强激光与粒子束, 2020, 32: 053006. doi: 10.11884/HPLPB202032.190423
Zhong Xuanming, Zhang Dongmin, Liao Cheng, et al. Two-element phased array antenna system suitable for tunnel environment[J]. High Power Laser and Particle Beams, 2020, 32: 053006. doi: 10.11884/HPLPB202032.190423
Citation: Zhong Xuanming, Zhang Dongmin, Liao Cheng, et al. Two-element phased array antenna system suitable for tunnel environment[J]. High Power Laser and Particle Beams, 2020, 32: 053006. doi: 10.11884/HPLPB202032.190423

适用于隧道环境的二元相控阵天线系统

doi: 10.11884/HPLPB202032.190423
基金项目: 国家自然科学基金项目(61771407);铁二院横向项目(2018H00665)
详细信息
    作者简介:

    钟选明(1972—),男,博士,从事天线设计及微波成像研究;xm_zhong@163.com

    通讯作者:

    张东民(1990—),男,博士研究生,从事天线设计及电磁兼容研究;zhangdongmin@my.swjtu.edu.cn

  • 中图分类号: TN828.6

Two-element phased array antenna system suitable for tunnel environment

  • 摘要:

    为了满足在隧道环境中实现高速率、高质量无线通信的迫切需求,研究了适用于隧道环境的高增益天线,提出了利用二元相控阵天线系统提高隧道内信号传输质量的新方法。相控阵天线系统由两个高增益天线单元及一个移相器组成,通过移相器调整其中一个天线单元的相位,使隧道内合成电场的最小值幅值达到最大,提升信号的平均场强。仿真结果表明:与单个天线发射信号相比,在3 000 m隧道轴向传播范围内,相控阵天线系统发射信号合成电场的最低电平最少提升了19.6 dB;与两个天线同时发射信号相比,最低电平最少提升了12.4 dB,取得较好分集优化效果,消除多径效应导致的深度衰落,解决了隧道环境中存在的通信问题。

  • 图  1  天线主辐射单元结构示意图

    Figure  1.  Structure diagram of the antenna main radiation unit

    图  2  微带八木天线结构示意图

    Figure  2.  Structural schematic diagram of microstrip Yagi antenna

    图  3  微带八木天线S11曲线图

    Figure  3.  Simulated S11 curve of microstrip Yagi antenna

    图  4  微带八木天线增益随频率变化曲线图

    Figure  4.  Curve of microstrip Yagi antenna gain vs frequency

    图  5  相控阵天线系统组成与安装示意图

    Figure  5.  Composition and installation diagram of phased array antenna system

    图  6  铁路单洞双轨隧道横截面示意图

    Figure  6.  Cross section diagram of railway single-hole and double-track tunnel

    图  7  基于隧道环境电磁仿真模型的相位优化流程图

    Figure  7.  Phase optimized flow chart based on the tunnel environment electromagnetic simulation model

    图  8  隧道内列车所在位置A与B处的电场强度分布图

    Figure  8.  Electric field intensity distribution at locations A and B of train in tunnel

  • [1] 洪开荣. 我国隧道及地下工程近两年的发展与展望[J]. 隧道建设, 2017, 37(2):123-134. (Hong Kairong. Development and prospects of tunnels and underground works in China in recent two years[J]. Tunnels Construction, 2017, 37(2): 123-134 doi: 10.3973/j.issn.1672-741X.2017.02.002
    [2] 杨新, 尤扬, 张代飞, 等. 浅析移动通信隧道覆盖方案与共建共享[J]. 邮电设计技术, 2014, 10:58-64. (Yang Xin, You Yang, Zhang Daifei, et al. Analysis of wireless communication coverage issues and co-construction model of tunnels[J]. Designing Techniques of Posts and Telecommunications, 2014, 10: 58-64 doi: 10.3969/j.issn.1007-3043.2014.10.012
    [3] 张昕, 杨晓冬, 郭黎利, 等. 隧道中泄漏同轴电缆和螺旋天线辐射场的比较[J]. 系统工程与电子技术, 2008, 30(5):973-976. (Zhang Xin, Yang Xiaodong, Guo Lili, et al. Comparison of the radiated field between leaky coaxial cable and spiral antenna in the blind zone[J]. Journal of Systems Engineering and Electronics, 2008, 30(5): 973-976 doi: 10.3321/j.issn:1001-506X.2008.05.048
    [4] 曹思聪. 受限空间中的新型天线设计及其电波覆盖特性的研究[D]. 北京: 北京交通大学, 2016.

    Cao Sicong. Design of the novel antennas for confined spaces and research on the characteristics of radio wave coverage[D]. Beijing: Beijing Jiaotong University, 2016
    [5] Mahmoud S F. Wireless transmission in tunnels with non-circular cross section[J]. IEEE Trans Antennas Propag, 2010, 58(2): 613-616. doi: 10.1109/TAP.2009.2037704
    [6] Zhou C. Ray tracing and modal methods for modeling radio propagation in tunnels with rough wall[J]. IEEE Trans Antennas Propag, 2017, 65(5): 2624-2634. doi: 10.1109/TAP.2017.2677398
    [7] Popov A V, Zh u N. Modeling radio wave propagation in tunnels with a vectorial parabolic equation[J]. IEEE Trans Antennas Propag, 2000, 48(9): 1403-1412. doi: 10.1109/8.898773
    [8] 张东民, 廖成, 张青洪. 基于分形的粗糙海面三维抛物方程模型及其应用[J]. 电波科学学报, 2016, 31(5):870-876. (Zhang Dongmin, Liao Cheng, Zhang Qinghong. Three-dimensional parabolic equation model for rough sea surface based on fractal method and its application[J]. Chinese Journal of Radio Science, 2016, 31(5): 870-876
    [9] Zhang P, Bai L, Wu Z, et al. Applying the parabolic equation to tropospheric groundwave propagation: A review of recent achievements and significant milestones[J]. IEEE Antennas and Propagation Magazine, 2016, 58(3): 31-44. doi: 10.1109/MAP.2016.2541620
    [10] Zhang X, Sarris C. A Gaussian beam approximation approach for embedding antennas into vector parabolic equation based wireless channel propagation models[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(3): 1301-1310. doi: 10.1109/TAP.2016.2647589
    [11] Marrtelly R, Janaswamy R. An ADI-PE approach for modeling radio transmission loss in tunnels[J]. IEEE Trans Antennas Propag, 2009, 57(6): 1759-1769. doi: 10.1109/TAP.2009.2019891
    [12] Boglaev I. Monotone iterative ADI method for semilinear parabolic problems[J]. BIT Numerical Mathematics, 2015, 55(3): 647-676. doi: 10.1007/s10543-014-0529-6
    [13] Hardin R H, Tappert F D. Application of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equation[J]. Siam Rev, 1973, 15: 423-429.
    [14] Aslan M, Smith K B. Modal analysis of split-step Fourier parabolic equation solutions in the presence of rough surface scattering[J]. Journal of the Acoustical Society of America, 2017, 142(4): 2496-2497.
  • 加载中
图(8)
计量
  • 文章访问数:  1803
  • HTML全文浏览量:  601
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-08
  • 修回日期:  2020-01-17
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回