留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车辆点火脉冲对短波电磁环境影响的数值模拟与试验研究

乐波 刘忠 侯志林 曹春霞

乐波, 刘忠, 侯志林, 等. 车辆点火脉冲对短波电磁环境影响的数值模拟与试验研究[J]. 强激光与粒子束, 2020, 32: 073004. doi: 10.11884/HPLPB202032.190441
引用本文: 乐波, 刘忠, 侯志林, 等. 车辆点火脉冲对短波电磁环境影响的数值模拟与试验研究[J]. 强激光与粒子束, 2020, 32: 073004. doi: 10.11884/HPLPB202032.190441
Le Bo, Liu Zhong, Hou Zhilin, et al. Electromagnetic environment effects of vehicle ignition pulses on shortwave radio receivers[J]. High Power Laser and Particle Beams, 2020, 32: 073004. doi: 10.11884/HPLPB202032.190441
Citation: Le Bo, Liu Zhong, Hou Zhilin, et al. Electromagnetic environment effects of vehicle ignition pulses on shortwave radio receivers[J]. High Power Laser and Particle Beams, 2020, 32: 073004. doi: 10.11884/HPLPB202032.190441

车辆点火脉冲对短波电磁环境影响的数值模拟与试验研究

doi: 10.11884/HPLPB202032.190441
基金项目: 盲信号处理国家级重点实验室基金项目
详细信息
    作者简介:

    乐 波(1970—),女,博士,副研究员,主要研究方向为电磁环境干扰评估及电磁态势生成、辐射源个体识别;leboo@126.com

  • 中图分类号: TN011

Electromagnetic environment effects of vehicle ignition pulses on shortwave radio receivers

  • 摘要: 为评估车辆点火脉冲对短波接收站电磁环境的影响,首先分析了车辆点火原理模型,并测试了小轿车、卡车两种典型车辆的点火脉冲生成的频域噪声;其次利用基于距量法的电磁计算软件对小轿车、卡车的点火脉冲等效天线与10 m单极子接收天线之间的传输效应进行了数值模拟与分析,获得传输损耗波动曲线。最后通过3辆汽车点火实测对乡村短波接收站的电磁环境影响进行了对比分析。仿真与实测结果表明:卡车点火脉冲辐射功率高于小轿车辐射功率14 dB;车辆点火脉冲等效天线相对于10 m单极子接收天线,在7.5 MHz传输损耗最小,相距30,100 m时传输损耗分别为24,32.2 dB;试验中,在30 m距离处,3辆小汽车点火脉冲对短波电磁环境的影响为抬高了低频段底噪1~2 dB,当距离增加到100 m以上时,已无明显影响。
  • 图  1  车辆发动机点火系统示意图

    Figure  1.  Diagram of vehicle engine ignition system

    图  2  车辆点火前后噪声功率比

    Figure  2.  Noise power ratio of vehicle engine ignition on and off

    图  3  三个矩形脉冲信号时域波形与频谱图

    Figure  3.  Time domain waveforms and spectrums of three rectangular pulse signals

    图  4  小汽车打火对单极子天线性能影响仿真模型

    Figure  4.  EM model of the effect of car ignition on the monopole antenna

    图  5  车辆打火等效天线至10 m单极子天线的传输损耗

    Figure  5.  Transmission loss of the car ignition-equivalent antenna to 10 m monopole antenna

    图  6  两辆小轿车点火等效天线模型与传输损耗

    Figure  6.  EM model of 2-car ignition-equivalent antenna and the transmission loss

    图  7  大卡车等效天线输入阻抗及输入电抗

    Figure  7.  Input impedance and reactance of the truck ignition-equivalent antenna

    图  8  大卡车等效天线方向图(xOy面)

    Figure  8.  Radiation pattern in x-y plane of the truck ignition-equivalent antenna

    图  9  卡车打火等效天线至10 m单极子天线的传输损耗(50 m)

    Figure  9.  Transmission loss of the truck ignition-equivalent antenna to 10 m monopole antenna(in 50 m)

    图  10  测试点人为噪声系数

    Figure  10.  Man-made noise at typical frequency

    图  11  D点与E点噪声电平比较

    Figure  11.  Comparison of the spectrums with vehicle ignition at the location D and E

    图  12  平滑后底噪比较

    Figure  12.  Comparison of the noise floor after signal smoothing

  • [1] 姚富强, 刘忠英, 赵杭生. 短波电磁环境问题研究——对认知无线电等通信技术再认识[J]. 中国电子科学研究院学报, 2015, 10(2):156-161, 179. (Yao Fuqiang, Liu Zhongying, Zhao Hangsheng. Study on the issues of HF electromagnetic environment[J]. Journal of CAEIT, 2015, 10(2): 156-161, 179 doi: 10.3969/j.issn.1673-5692.2015.02.008
    [2] Radiocommunication Sector of ITU. Recommendation ITU-R P. 372-12—Radio noise[R]. Geneva: International Telecommunication Union, 2015: 13-16.
    [3] Coleman C J. Noise and the choice of antenna in HF communications[C]//Proceedings of the 10th IET International Conference on Ionospheric Radio Systems and Techniques. 2006: 321-325.
    [4] Giesbrecht J, Clarke R, Abbott D. An empirical study of the probability distribution of HF noise[J]. Fluctuation and Noise Letters, 2006, 6(2): L117-L125. doi: 10.1142/S0219477506003203
    [5] Wagstaff A, Merricks N. Man-made noise measurement programme[J]. IEE Proceedings on Communication, 2005, 152(3): 371-377. doi: 10.1049/ip-com:20045025
    [6] Iwama M. Estimation of background noise in HF-band[C]//Asia-Pacific Symposium on Electromagnetic Compatibility and 19th International Zurich Symposium on Electromagnetic Compatibility. 2008: 478-481.
    [7] 胡绘斌, 陈建忠. 短波大气噪声的数值计算方法[J]. 通信技术, 2010, 43(7):31-32. (Hu Huibin, Chen Jianzhong. Numerical method for calculating shortwave atmospheric noise[J]. Communications Technology, 2010, 43(7): 31-32 doi: 10.3969/j.issn.1002-0802.2010.07.011
    [8] 张连迎, 王聚杰, 弓勇义. 典型工业区无线电噪声测量与分析[J]. 电子测量技术, 2014, 37(5):91-94. (Zhang Lianying, Wang Jujie, Gong Yongyi. Measurement and analysis of radio noise in typical industrial park[J]. Electronic Measurement Technology, 2014, 37(5): 91-94
    [9] 涂奔. 高压电力走廊对短波监测站无线电干扰实证研究[D]. 上海: 复旦大学, 2010: 17-23.

    Tu Ben. The research of a high-voltage power corridor assess the electromagnetic environment effects on the shortwave monitoring station[D]. Shanghai: Fudan University. 2010: 17-23
    [10] 唐波, 张建功, 赵志斌, 等. 特高压输电线路对高频信号无源干扰的近似求解[J]. 高电压技术, 2012, 38(6):1420-1427. (Tang Bo, Zhang Jiangong, Zhao Zhibin, et al. Approximate calculation of reradation interference in high frequency signals from UHV transmission lines[J]. High Voltage Engineering, 2012, 38(6): 1420-1427
    [11] 汪泉弟, 刘春艳, 俞集辉, 等. 汽车火花点火系统电磁干扰的抑制方法[J]. 重庆大学学报(自然科学版), 2007, 30(7):46-49. (Wang Quandi, Liu Chunyan, Yu Jihui, et al. On suppressing electromagnetic interference caused by automobile spark ignition system[J]. Journal of Chongqing University(Natural Science Edition), 2007, 30(7): 46-49
    [12] 俞集辉, 贾晋, 汪泉弟, 等. 汽车点火系统传导电磁干扰仿真[J]. 重庆大学学报, 2011, 34(1):88-93. (Yu Jihui, Jia Jin, Wang Quandi, et al. The simulation of conducted EMI in the ignition system for automotive[J]. Journal of Chongqing University, 2011, 34(1): 88-93
  • 加载中
图(12)
计量
  • 文章访问数:  1228
  • HTML全文浏览量:  288
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-02
  • 修回日期:  2020-06-20
  • 刊出日期:  2020-06-24

目录

    /

    返回文章
    返回