留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双频回旋管内置准光模式变换器设计

黄麒力 孙迪敏 马国武 胡林林 卓婷婷

黄麒力, 孙迪敏, 马国武, 等. 双频回旋管内置准光模式变换器设计[J]. 强激光与粒子束, 2020, 32: 053001. doi: 10.11884/HPLPB202032.190446
引用本文: 黄麒力, 孙迪敏, 马国武, 等. 双频回旋管内置准光模式变换器设计[J]. 强激光与粒子束, 2020, 32: 053001. doi: 10.11884/HPLPB202032.190446
Huang Qili, Sun Dimin, Ma Guowu, et al. Design of quasi-optical mode converter for dual-frequency gyrotron[J]. High Power Laser and Particle Beams, 2020, 32: 053001. doi: 10.11884/HPLPB202032.190446
Citation: Huang Qili, Sun Dimin, Ma Guowu, et al. Design of quasi-optical mode converter for dual-frequency gyrotron[J]. High Power Laser and Particle Beams, 2020, 32: 053001. doi: 10.11884/HPLPB202032.190446

双频回旋管内置准光模式变换器设计

doi: 10.11884/HPLPB202032.190446
基金项目: 国家自然科学基金项目(U1830201);中物院创新发展基金项目(CX2019038);中物院创新发展基金培育项目(PY2019130)
详细信息
    作者简介:

    黄麒力(1992—),男,硕士,从事毫米波与太赫兹电真空器件研究;huangqilicaep@163.com

    通讯作者:

    孙迪敏(1987—),男,博士,从事毫米波与太赫兹电真空器件研究;sundimin@caep.cn

  • 中图分类号: TN129

Design of quasi-optical mode converter for dual-frequency gyrotron

  • 摘要:

    回旋管一般使用准光模式变换器实现高阶腔体模式到高斯波束的转换。结合标量衍射理论、KS迭代算法、几何光学、最小均方法等方法设计了工作频率为140 GHz(TE24, 9)和105 GHz(TE18, 7)的双频准光模式变换器。仿真结果显示所设计的准光模式变换器工作频率为140 GHz(TE24, 9)时能量传输效率99.0%、高斯含量99.7%,工作频率为105 GHz(TE18, 7)时能量传输效率97.3%、高斯含量98.0%。能够满足MW级双频回旋管的应用需求。

  • 图  1  准光模式变换器示意图

    Figure  1.  Schematic arrangement of the quasi-optical mode converter

    图  2  105 GHz TE18,7和140 GHz TE24,9双频辐射器的内壁上的场分布图(dB值)。辐射器边缘和口径已在图中标出

    Figure  2.  Field distribution on the wall of the launcher for 105 GHz TE18,7 and 140 GHz TE24,9 gyrotron (in dB), the edges of the launcher aperture and cut are indicated

    图  3  105 GHz TE18,7和140 GHz TE24,9双频辐射器的内壁微扰分布图

    Figure  3.  Profile of the wall surface of the dual-frequency launcher for 105 GHz TE18,7 and 140 GHz TE24,9 gyrotron

    图  4  与辐射器同坐标系,半径为5 cm圆柱面上的电场分布图(dB值)

    Figure  4.  E-field distribution on a cylinder with radius of 5 cm in the same coordinate system as the launcher(in dB)

    图  5  相位修正镜的设计流程

    Figure  5.  Design procedure of the phase correction mirror

    图  6  仿真软件中得到的xz平面上的电场分布图(dB值)

    Figure  6.  Side view of the E-field of the whole system along the center symmetry xz plane obtained from simulation(in dB)

    图  7  窗平面处的电场等值线图。每条线间隔3 dB

    Figure  7.  Contour plots of the E-field on the window plane. The contours are in 3 dB increments

    表  1  两种模式在圆波导中的传播参数

    Table  1.   Propagation parameters of the circular waveguide for considered modes

    modefrequency/GHzwaveguide radius/mmcaustic radius/mmpitch distance/mmaxial bounce angle/(°)
    TE18,710521.58.7641.173.1
    TE24,914021.58.8042.672.4
    下载: 导出CSV

    表  2  仿真结果

    Table  2.   Results of simulation

    modefrequency/GHzGaussian content/%conversion efficiency/%z-offset/mmy-offset/mm
    TE18,710598.097.32.002.25
    TE24,914099.799.00.500.50
    下载: 导出CSV
  • [1] Gregory S N, Manfred K T, Michael I A P. The gyrotron at 50: Historical overview[J]. Journal of Infrared Millimeter & Terahertz Waves, 2014, 35(4): 325-381.
    [2] Drumm O, Dammertz G, Thumm M. Design methods for mirrors in a quasi-optical mode converter for a frequency step-tunable gyrotron[C]//Infrared and Millimeter wave. 2002: 191-192.
    [3] Jin J, Thumm M, Piosczyk B, et al. Novel numerical method for the analysis and synthesis of the fields in highly oversized waveguide mode converters[J]. IEEE Trans Microw Theory Tech, 2009, 57(7): 1661-1668. doi: 10.1109/TMTT.2009.2021878
    [4] Hirata Y, Mitsunaka Y, Hayashi K, et al. The design of a tapered dimple-type mode converter/launcher for high-power gyrotrons[J]. IEEE Trans Plasma Science, 2003, 1(31): 142-146.
    [5] Rock B, Neilson J M, Vernon R J. A power-optimizing integrated design of a dual-frequency gyrotron quasi-optical mode converter[J]. IEEE Trans Plasma Science, 2012, 40(6): 1522-1529. doi: 10.1109/TPS.2012.2192296
    [6] Agapova M, Belov Y, Chirkov A, et al. Megawatt power dual-frequency gyrotrons for modern fusion facilities[C]//2019 44th International Conference on Infrared, Millimeter, and Terahertz waves. 2019: 627-628.
    [7] Jin J, Gantenbein G, Jelonnek J, et al. Quasi-optical mode converter for 1MW dual-frequency gyrotrons[C]//2017 Eighteenth International Vacuum Electronics Conference. 2017.
    [8] Jin J, Gantenbein G, Ruess T, et al. Design of a quasi-optical mode converter for a dual-frequency coaxial-cavity gyrotron[C]//2019 44th International Conference on Infrared, Millimeter, and Terahertz waves(IRMMW-THz). 2019.
    [9] Prinz O, Gantenbein G, Thumm M. Advanced quasi-optical mode converter for a multi-frequency gyrotron[C]//2008 IEEE International Vacuum Electronics Conference. 2008: 64-66.
    [10] Ikeda R, Oda Y, Kobayashi T, et al. Development of multi-frequency gyrotron for ITER and DEMO at QST[C]//2016 41st International Conference on Infrared, Millimeter, and Terahertz waves(IRMMW-THz). 2016.
    [11] Liao Shaolin. Multi-frequency beam-shaping mirror system design for high-power gyrotrons: Theory, algorithms and methods[D]. Madison: University of Wisconsin at Madison, 2008: 155-166.
    [12] 施美友, 屈劲, 薛长江, 等. 95GHz回旋管内置准光模式转换器仿真设计[J]. 强激光与粒子束, 2011, 23(9):172-176. (Shi Meiyou, Qu Jin, Xue Changjiang, et al. Simulation design of quasi-optical mode converter for 95 GHz gyrotron[J]. High Power Laser and Particle Beams, 2011, 23(9): 172-176
    [13] 王斌, 刘云龙, 王虎, 等. 高阶不对称体模回旋管Denisov型准光模式变换器[J]. 强激光与粒子束, 2016, 28:073005. (Wang Bin, Liu Yunlong, Wang Hu, et al. Denisov-type quasi-optical mode converter for higher-order asymmetric volume mode gyrotron[J]. High Power Laser and Particle Beams, 2016, 28: 073005 doi: 10.11884/HPLPB201628.073005
    [14] 刘健卫. 准光模式变换器研究与设计[D]. 成都: 电子科技大学, 2014: 19-20.

    Liu Jianwei. Research and design of quasi-optical mode converter[D]. Chengdu: University of Electronic Science and Technology of China, 2014: 19-20
    [15] 李浩, 汪海洋, 李天明, 等. W波段TE62-TEM00准光模式变换器[J]. 强激光与粒子束, 2011, 23(11):278-282. (Li Hao, Wang Haiyang, Li Tianming, et al. W-band quasi-optical TE62-TEM00 mode converter[J]. High Power Laser and Particle Beams, 2011, 23(11): 278-282
    [16] 边慧琦, 杜朝海, 潘石, 等. 太赫兹多模式宽带准光模式变换器的设计分析[C]//2018年全国微波毫米波会议. 2018: 1419-1412.

    Bian Huiqi, Du Chaohai, Pan Shi, et al. Design and analysis of terahertz multimode broadband quasi-optical mode converter[C]//2018 National Microwave and Millimeter Wave Conference. 2018: 1419-1412.
    [17] Du Chaohai, Pan Shi, Liu Pukun. THz broadband quasi-optical mode converter antenna system[C]//2016 IEEE international conference on microwave and millimeter wave technology(ICMMT). 2016.
    [18] 乔益民. 220 GHz边廊模准光模式变换器的研究[D]. 成都: 电子科技大学, 2013: 41-43.

    Qiao Yimin. Study of a quasi-optical mode converter for 220 GHz whispering-gallery mode[D]. Chengdu: University of Electronic Science and Technology of China, 2013: 41-43
    [19] Prinz O, Gantenbein G, Liu Yinghui, et al. Highly efficient quasi-optical mode converter for a multifrequency high-power gyrotron[J]. IEEE Trans Electron Devices, 2009, 56(5): 828-934. doi: 10.1109/TED.2009.2015819
    [20] Bogdashov A A, Denisov G G. Synthesis of the sequence of phase correctors forming the desired field[J]. Radio Physics & Quantum Electronics, 2004, 47(12): 966-973.
    [21] Vlasov S N. Transformation of a whispering gallery mode, propagating in a circular waveguide, into a beam of waves[J]. Radiofizika, 1972, 15(4): 14-17.
    [22] Vlasov S N, Orlova I M. Quasioptical transformer which transforms the waves in a waveguide having a circular cross section into a highly directional wave beam[J]. Radiophysics and Quantum Electronics, 1974, 17(1): 115-119. doi: 10.1007/BF01037072
    [23] Denisov G G, Kuftin A N, Malygin V I, et al. 110 GHz gyrotron with a built-in high-efficiency converter[J]. International Journal of Electronics, 1992, 72(5): 1079-1091.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1443
  • HTML全文浏览量:  380
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-03
  • 修回日期:  2020-02-20
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回