Conjugate rotation smoothing scheme for laser quad based on dual-frequency laser and spiral phase plate
-
摘要: 提出了一种基于双频光源和涡旋相位板实现光束快速互补旋转的集束匀滑方案。双频光源为集束中各子束提供频移,拓扑荷数相同但反号的涡旋相位板阵列用于将各个子束变换成拉盖尔—高斯(LG)光束,而通过偏振控制则可实现子束间两两的相干叠加。在此基础上,通过采用共轭连续相位板可使波长不同、偏振态不同的子束组合在靶面形成快速旋转且空间上互补填充的焦斑。结果表明,利用这一方案可实现子束散斑在靶面上快速旋转且散斑分布保持互补,进而有效改善靶面辐照均匀性,甚至为抑制激光等离子体不稳定性提供了一种潜在途径。
-
关键词:
- 惯性约束聚变 /
- 集束匀滑 /
- 涡旋相位 /
- 辐照均匀性 /
- 激光等离子体不稳定性
Abstract: Conjugate rotation smoothing scheme for laser quad based on dual-frequency laser and spiral phase plate was proposed. The dual-frequency laser provides frequency shift among the beamlets, the spiral phase plates with same helical charge but opposite sign transform the beamlets into Laguerre-Gaussian beams, and the polarization control is applied to make these beamlets coherently superposed on the target plane. On this basis, the conjugate continuous phase plates are adopted to enable the beamlets with different central wavelength and orthogonal polarization form focal spots with rapid rotation. Moreover, the spatiotemporal focal spot of the laser quad looks like conjugate spin light because of the frequency beats. It is indicated that, the scheme enables the fine-scale speckles within the focal spot rotate in a period of a few picoseconds, and even exhibit different intensities and wavelengths at different time and different positions. Hence, the novel scheme can effectively smooth the irradiation uniformity of the laser quad and even has the potential to mitigate laser plasma interactions. -
图 4 (a)原CPP和(b)共轭CPP的面型分布,(c)两光束分别经共轭CPP的焦斑光强分布
Figure 4. Surface shape of an original CPP (a) and its conjugate CPP (b). (c) is the far-field intensity distributions of a same laser beam after propagating through these two CPPs. Red regions shows the speckles generated by the original CPP, and green regions within the focal spot show the speckles generated by the conjugate CPP
图 8 不同振幅和位相畸变时,光通量对比度随积分时间的变化以及FOPAI曲线
Figure 8. (a) Variation of the contrast of the focal spot with the integral time when the beamlets have different beam quality. PV denotes the peak-to-mean value of the wavefront distortion, and a denotes the max-to-mean value of the amplitude modulation. (b) FOPAI curves of the focal spot when the integral time is 5 ps
-
[1] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phys Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638 [2] Haynam C A, Sacks R A, Moses E I, et al. National Ignition Facility laser performance status[J]. Appl Opt, 2007, 46(16): 3276-3303. doi: 10.1364/AO.46.003276 [3] Néauport J, Ribeyre X, Daurios J, et al. Design and optical characterization of a large continuous phase plate for laser integration line and laser megajoule facilities[J]. Appl Opt, 2003, 42(13): 2377-2382. doi: 10.1364/AO.42.002377 [4] Miyaji G, Miyanaga N, Urushihara S, et al. Three-directional spectral dispersion for smoothing of a laser irradiance profile[J]. Opt Lett, 2002, 27(9): 725-727. doi: 10.1364/OL.27.000725 [5] Munro D H, Dixit S N, Langdon A B, et al. Polarization smoothing in a convergent beam[J]. Appl Opt, 2004, 43(36): 6639-6647. doi: 10.1364/AO.43.006639 [6] Skupsky S, Short R W, Kessler T, et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. J. Appl Phys, 1989, 66(8): 3456-3462. doi: 10.1063/1.344101 [7] Strozzi D J, Sepke S M, Bailey D S, et al. Inline modeling of cross-beam energy transfer and Raman scattering in NIF hohlraums[R]. Lawrence Livermore National Laboratory (LLNL), 2016. [8] Masson-Laborde P E, Monteil M C, Tassin V, et al. Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums[J]. Phys Plasmas, 2016, 23: 022703. doi: 10.1063/1.4941706 [9] Montgomery D S. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion[J]. Phys Plasmas, 2016, 23: 055601. doi: 10.1063/1.4946016 [10] Weng X, Zhong Z, Li J, et al. Filamentation of spatiotemporal smoothed focal spot in plasma by Beam Smoothing scheme[J]. Optics Commun, 2019, 436: 216-221. doi: 10.1016/j.optcom.2018.12.039 [11] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys Rev A, 1992, 45(11): 8185. doi: 10.1103/PhysRevA.45.8185 [12] Fürhapter S, Jesacher A, Bernet S, et al. Spiral interferometry[J]. Opt Lett, 2005, 30(15): 1953-1955. doi: 10.1364/OL.30.001953 [13] Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810. doi: 10.1038/nature01935 [14] Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Opt Express, 2004, 12(22): 5448-5456. doi: 10.1364/OPEX.12.005448 [15] Zhong Z, Yi M, Sui Z, et al. Ultrafast smoothing scheme for improving illumination uniformities of laser quads[J]. Opt Lett, 2018, 43(14): 3285-3288. doi: 10.1364/OL.43.003285 [16] Zhong Z, Hou P, Zhang B. Radial smoothing for improving laser-beam irradiance uniformity[J]. Opt Lett, 2015, 40(24): 5850-5853. doi: 10.1364/OL.40.005850