留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双频光源和涡旋相位的互补旋转集束匀滑方案

钟哲强 张彬

钟哲强, 张彬. 基于双频光源和涡旋相位的互补旋转集束匀滑方案[J]. 强激光与粒子束, 2020, 32: 011012. doi: 10.11884/HPLPB202032.190454
引用本文: 钟哲强, 张彬. 基于双频光源和涡旋相位的互补旋转集束匀滑方案[J]. 强激光与粒子束, 2020, 32: 011012. doi: 10.11884/HPLPB202032.190454
Zhong Zheqiang, Zhang Bin. Conjugate rotation smoothing scheme for laser quad based on dual-frequency laser and spiral phase plate[J]. High Power Laser and Particle Beams, 2020, 32: 011012. doi: 10.11884/HPLPB202032.190454
Citation: Zhong Zheqiang, Zhang Bin. Conjugate rotation smoothing scheme for laser quad based on dual-frequency laser and spiral phase plate[J]. High Power Laser and Particle Beams, 2020, 32: 011012. doi: 10.11884/HPLPB202032.190454

基于双频光源和涡旋相位的互补旋转集束匀滑方案

doi: 10.11884/HPLPB202032.190454
基金项目: 国家自然科学基金项目(61905167);国家重大专项应用基础项目(JG2018115,JG2018152,JG2017149)
详细信息
    作者简介:

    钟哲强(1989—),男,博士,副研究员,从事强激光传输与调控技术研究;scuzhongzq@163.com

    通讯作者:

    张 彬(1969—),女,博士,教授,从事强激光传输与调控技术研究;zhangbinff@sohu.com

  • 中图分类号: O435

Conjugate rotation smoothing scheme for laser quad based on dual-frequency laser and spiral phase plate

  • 摘要: 提出了一种基于双频光源和涡旋相位板实现光束快速互补旋转的集束匀滑方案。双频光源为集束中各子束提供频移,拓扑荷数相同但反号的涡旋相位板阵列用于将各个子束变换成拉盖尔—高斯(LG)光束,而通过偏振控制则可实现子束间两两的相干叠加。在此基础上,通过采用共轭连续相位板可使波长不同、偏振态不同的子束组合在靶面形成快速旋转且空间上互补填充的焦斑。结果表明,利用这一方案可实现子束散斑在靶面上快速旋转且散斑分布保持互补,进而有效改善靶面辐照均匀性,甚至为抑制激光等离子体不稳定性提供了一种潜在途径。
  • 图  1  互补旋转集束匀滑方案

    Figure  1.  Schematic illustration of conjugate rotation smoothing scheme for laser quad based on dual-frequency laser and spiral phase plate

    图  2  不考虑CPP时,集束焦斑光强分布

    Figure  2.  Focused intensity distribution of the laser quad at different time (without continous phase plate), red areas denote the intensity distribution of beam 1 and beam 3, green areas denote the intensity of beam 2 and beam 4

    图  3  旋转周期和相干长度随中心波长差的变化

    Figure  3.  Variations of the coherence length and the rotation period with the wavelength difference when the helical charge l=±1

    图  4  (a)原CPP和(b)共轭CPP的面型分布,(c)两光束分别经共轭CPP的焦斑光强分布

    Figure  4.  Surface shape of an original CPP (a) and its conjugate CPP (b). (c) is the far-field intensity distributions of a same laser beam after propagating through these two CPPs. Red regions shows the speckles generated by the original CPP, and green regions within the focal spot show the speckles generated by the conjugate CPP

    图  5  焦斑内部散斑线速度随偏心距离的变化

    Figure  5.  Variation of the linear velocity of the speckles at different locations inside the focal spot

    图  6  不同拓扑荷数时,光通量对比度随积分时间的变化以及积分时间为20 ps的FOPAI曲线

    Figure  6.  Comparison of the conjugate spin-light smoothing scheme at different combination of helical charges with smoothing by spectral dispersion.

    图  7  不考虑CPP时激光集束焦斑光强分布

    Figure  7.  Focused intensity distribution of the laser quad at different time (without CPP), red areas denote the intensity distribution of beam 1 and beam 3, and green areas denote the intensity distribution of beam 2 and beam 4

    图  8  不同振幅和位相畸变时,光通量对比度随积分时间的变化以及FOPAI曲线

    Figure  8.  (a) Variation of the contrast of the focal spot with the integral time when the beamlets have different beam quality. PV denotes the peak-to-mean value of the wavefront distortion, and a denotes the max-to-mean value of the amplitude modulation. (b) FOPAI curves of the focal spot when the integral time is 5 ps

    图  9  不同时刻集束焦斑光强分布

    Figure  9.  Focal spots at different time without the use of continuous phase plates, when both spin-light smoothing scheme and radial smoothing are adopted

    图  10  光通量对比度随积分时间的变化和积分时间为20 ps时的FOPAI曲线

    Figure  10.  Variation of the contrasts of the focal spot with the integral time and FOPAI curves with the integral time 20 ps

  • [1] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phys Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [2] Haynam C A, Sacks R A, Moses E I, et al. National Ignition Facility laser performance status[J]. Appl Opt, 2007, 46(16): 3276-3303. doi: 10.1364/AO.46.003276
    [3] Néauport J, Ribeyre X, Daurios J, et al. Design and optical characterization of a large continuous phase plate for laser integration line and laser megajoule facilities[J]. Appl Opt, 2003, 42(13): 2377-2382. doi: 10.1364/AO.42.002377
    [4] Miyaji G, Miyanaga N, Urushihara S, et al. Three-directional spectral dispersion for smoothing of a laser irradiance profile[J]. Opt Lett, 2002, 27(9): 725-727. doi: 10.1364/OL.27.000725
    [5] Munro D H, Dixit S N, Langdon A B, et al. Polarization smoothing in a convergent beam[J]. Appl Opt, 2004, 43(36): 6639-6647. doi: 10.1364/AO.43.006639
    [6] Skupsky S, Short R W, Kessler T, et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. J. Appl Phys, 1989, 66(8): 3456-3462. doi: 10.1063/1.344101
    [7] Strozzi D J, Sepke S M, Bailey D S, et al. Inline modeling of cross-beam energy transfer and Raman scattering in NIF hohlraums[R]. Lawrence Livermore National Laboratory (LLNL), 2016.
    [8] Masson-Laborde P E, Monteil M C, Tassin V, et al. Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums[J]. Phys Plasmas, 2016, 23: 022703. doi: 10.1063/1.4941706
    [9] Montgomery D S. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion[J]. Phys Plasmas, 2016, 23: 055601. doi: 10.1063/1.4946016
    [10] Weng X, Zhong Z, Li J, et al. Filamentation of spatiotemporal smoothed focal spot in plasma by Beam Smoothing scheme[J]. Optics Commun, 2019, 436: 216-221. doi: 10.1016/j.optcom.2018.12.039
    [11] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys Rev A, 1992, 45(11): 8185. doi: 10.1103/PhysRevA.45.8185
    [12] Fürhapter S, Jesacher A, Bernet S, et al. Spiral interferometry[J]. Opt Lett, 2005, 30(15): 1953-1955. doi: 10.1364/OL.30.001953
    [13] Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810. doi: 10.1038/nature01935
    [14] Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Opt Express, 2004, 12(22): 5448-5456. doi: 10.1364/OPEX.12.005448
    [15] Zhong Z, Yi M, Sui Z, et al. Ultrafast smoothing scheme for improving illumination uniformities of laser quads[J]. Opt Lett, 2018, 43(14): 3285-3288. doi: 10.1364/OL.43.003285
    [16] Zhong Z, Hou P, Zhang B. Radial smoothing for improving laser-beam irradiance uniformity[J]. Opt Lett, 2015, 40(24): 5850-5853. doi: 10.1364/OL.40.005850
  • 加载中
图(10)
计量
  • 文章访问数:  1829
  • HTML全文浏览量:  307
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-29
  • 修回日期:  2019-12-24
  • 刊出日期:  2019-12-26

目录

    /

    返回文章
    返回