留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermal management of water-cooled 10 Hz Yb:YAG laser amplifier

Jiang Xinying Wang Zhenguo Zheng Jiangang Yan Xiongwei Li Min Zhang Xiongjun Su Jingqin Zhu Qihua Zheng Wanguo

蒋新颖, 王振国, 郑建刚, 等. 水冷10 Hz Yb:YAG激光放大器热管理[J]. 强激光与粒子束, 2020, 32: 011010. doi: 10.11884/HPLPB202032.190456
引用本文: 蒋新颖, 王振国, 郑建刚, 等. 水冷10 Hz Yb:YAG激光放大器热管理[J]. 强激光与粒子束, 2020, 32: 011010. doi: 10.11884/HPLPB202032.190456
Jiang Xinying, Wang Zhenguo, Zheng Jiangang, et al. Thermal management of water-cooled 10 Hz Yb:YAG laser amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 011010. doi: 10.11884/HPLPB202032.190456
Citation: Jiang Xinying, Wang Zhenguo, Zheng Jiangang, et al. Thermal management of water-cooled 10 Hz Yb:YAG laser amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 011010. doi: 10.11884/HPLPB202032.190456

水冷10 Hz Yb:YAG激光放大器热管理

doi: 10.11884/HPLPB202032.190456
详细信息
  • 中图分类号: TN248.1

Thermal management of water-cooled 10 Hz Yb:YAG laser amplifier

Funds: Key Laboratory of Science and Technology on High Energy Laser,China Academy of Engineering Physics (2019HEL05-2)
More Information
  • 摘要: 为了控制重频放大器的热致波前畸变,设计并加工了均匀冷却的背面水冷激活镜激光放大器,对放大器的热畸变特性开展了实验研究,实验发现在泵浦功率密度较高即重复频率达到10 Hz,平均功率密度达到200 W/cm2时,放大器的热畸变既影响远场分布又对近场产生显著的调制。近场的调制会给放大器带来较大的损伤风险。为了消除热畸变对近场的调制,首先对泵浦强度分布进行了匀化,然后对介质进行了边缘热平衡控制,消除了热畸变引起的近场调制。通过对上述因素的控制,采用水冷激活镜构型的四程放大器实现了在10 Hz频率下良好运行。在没有进行主动补偿的情况下,实现了远场焦斑优于5倍衍射极限的输出。
  • Figure  1.  Diagrammatic sketch of the laser head and mechanical structure of the water viscolizer

    Figure  2.  Numerical results of surface heat transfer coefficient

    Figure  3.  Numerical results of wavefront distortion

    Figure  4.  (a) near-field distribution of the pump, (b) near field of output laser with 1 Hz pumping and (c) near field of output laser with 10 Hz pumping

    Figure  5.  (a) near-field distribution of the pump after optimization and (b) near field of output laser

    Figure  6.  Pumping distribution and near field after one-pass amplification for a ϕ35 mm disk

    Figure  7.  (a) Cr4+:YAG ceramic cladded Yb:YAG crystal, (b) near field after four-pass amplification

    Figure  8.  Near field picture of different size matching degree

    Figure  9.  Near field picture of 18 mm×16 mm crystal pumped by 16 mm×14 mm beam

    Figure  10.  Beam quality parameters of output laser

    Table  1.   Diode pumped active mirror lasers of several institutions

    institution pump power denisity/(W·cm−2) energy of single laser pulse/ J output frequency/ Hz cooling condition
    LULI, France 32 14 2 room temperature
    55 30 10 cryogenic temperature
    Osaka University, Japan[8] 55 1 100 cryogenic temperature
    Industrial Development Center,Japan[9] 37.5 11.5 10 cryogenic temperature
    Colorado State University, USA[10] 504 1.5 500 cryogenic temperature
    Tsinghua University, China[11] 12 12 10 room temperature
    Laser Fusion Research Center
    of CAEP, China
    20 8.5[12] 1 room temperature
    下载: 导出CSV
  • [1] Bourdet G. Comparison of pulse amplification performances in longitudinally pumped ytterbium doped materials[J]. Opt Commun, 2001, 200: 331-342. doi: 10.1016/S0030-4018(01)01622-4
    [2] Yu Haiwu, Duan Wentao, Xu Meijian, et al. Review of ytterbium-doped laser materials[J]. Laser &Optoelectronics Progress, 2007, 44(5): 30-41.
    [3] Bayramian A, Armstrong P, Ault E, et al. The Mercury project: A high average power, gas-cooled laser for inertial fusion energy development[J]. Fus Sci Technol, 2007, 52: 383-387. doi: 10.13182/FST07-A1517
    [4] Dong Jun, Bass Michael, Mao Yanli, et al. Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet[J]. Journal of the Optical Society of America B, 2003, 20(9): 1975-1979. doi: 10.1364/JOSAB.20.001975
    [5] Gonçalvès-Novo T, Albach D, Vincent B, et al. 14 J/2 Hz Yb3+: YAG diode pumped solid state laser chain[J]. Optics Express, 2013, 21(1): 855-866. doi: 10.1364/OE.21.000855
    [6] Marrazzo S, Gonçalvès-Novo T, Millet F, et al. Low temperature diode pumped active mirror Yb3+: YAG disk laser amplifier studies[J]. Optics Express, 2016, 24(12): 12651-12660. doi: 10.1364/OE.24.012651
    [7] Mason P, Divoký M, Butcher T, et al. Commissioning of a kW-class nanosecond pulsed DPSSL operating at 105 J, 10 Hz [C]//Proceedings of the SPIE. 2017: 102380H.
    [8] Iyama K, Tokita S, Kawashim T, et al. Development of sub-ns, 1 J Yb: YAG TRAM multipass amplifier[C]//HEC-DPSSL. 2017.
    [9] Kabeya Y, Morita T, Hatano Y, et al. Development of a 10-J, 10-Hz laser amplifier system with cryo-cooled Yb: YAG ceramics using active-mirror method [C]//Proc of SPIE. 2019: 108960M.
    [10] Han Chi, Baumgarten C M, Jankowska E, et al. Thermal behavior characterization of a kilowatt-power-level cryogenically cooled Yb: YAG active mirror laser amplifier[J]. Journal of the Optical Society of America B, 2019, 36(4): 1084-1090. doi: 10.1364/JOSAB.36.001084
    [11] Liu Tinghao, Sui Zhan, Chen Lin, et al. 12 J, 10 Hz diode-pumped Nd: YAG distributed active mirror amplifier chain with ASE suppression[J]. Optics Express, 2017, 25(18): 21981-21992. doi: 10.1364/OE.25.021981
    [12] Zheng Jiangang, Jiang Xinying, Yan Xiongwei, et al. Progress of the 10 J water-cooled Yb: YAG laser system in RCLF[J]. High Power Laser Science and Engineering, 2014, 2: e27. doi: 10.1017/hpl.2014.29
    [13] Jiang Xinying, Yan Xiongwei, Wang Zhenguo, et al. Influence of thermal reduced depolarization on a repetition-frequency laser amplifier and compensation[J]. High Power Laser Science and Engineering, 2015, 3: e9. doi: 10.1017/hpl.2015.4
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  2181
  • HTML全文浏览量:  425
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-15
  • 修回日期:  2019-12-20
  • 刊出日期:  2019-12-26

目录

    /

    返回文章
    返回