留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NbSe2纳米颗粒锁模的2 μm光纤激光器

刘新星 田振 唐玉龙

刘新星, 田振, 唐玉龙. NbSe2纳米颗粒锁模的2 μm光纤激光器[J]. 强激光与粒子束, 2020, 32: 011013. doi: 10.11884/HPLPB202032.190458
引用本文: 刘新星, 田振, 唐玉龙. NbSe2纳米颗粒锁模的2 μm光纤激光器[J]. 强激光与粒子束, 2020, 32: 011013. doi: 10.11884/HPLPB202032.190458
Liu Xinxing, Tian Zhen, Tang Yulong. NbSe2 nanoparticles mode-locked 2 μm thulium fiber laser[J]. High Power Laser and Particle Beams, 2020, 32: 011013. doi: 10.11884/HPLPB202032.190458
Citation: Liu Xinxing, Tian Zhen, Tang Yulong. NbSe2 nanoparticles mode-locked 2 μm thulium fiber laser[J]. High Power Laser and Particle Beams, 2020, 32: 011013. doi: 10.11884/HPLPB202032.190458

NbSe2纳米颗粒锁模的2 μm光纤激光器

doi: 10.11884/HPLPB202032.190458
基金项目: 上海市自然科学基金项目(19ZR1427100);国家自然科学基金项目(61675129,61875247);基金委创新研究群体项目(11721091)
详细信息
    作者简介:

    刘新星(1994—),男,硕士研究生,从事锁模光纤激光器技术研究;lxx1600376326@163.com

    通讯作者:

    唐玉龙(1975—),男,副教授,从事光纤激光器及非线性光纤光学的研究;yulong@sjtu.edu.cn

  • 中图分类号: TN248.1

NbSe2 nanoparticles mode-locked 2 μm thulium fiber laser

  • 摘要: 高重频大脉冲能量激光在基础科学研究以及通信、探测、材料加工等应用领域具有重要价值。报道了溶液法制备的过渡金属二硫化物NbSe2纳米颗粒材料的线性和非线性光学特性,并利用其2 μm波段可饱和吸收特性对掺铥光纤激光器进行被动调制实现了2 μm锁模激光输出。线性测量发现NbSe2纳米材料的光学吸收覆盖近红外到近中红外波段且随波长增加而降低;非线性光学测量显示NbSe2纳米材料在2 μm波段的调制深度为6.5%、饱和强度为19 MW·cm−2。然后我们把NbSe2纳米材料转移到金镜上制作成可饱和吸收器件,并对掺铥光纤激光器进行调制得到2 μm耗散孤子谐波锁模激光,单脉冲能量为3.36 nJ,脉冲宽度为1.48 ns,重复频率为50.66 MHz。激光光谱的中心波长为1 910.8 nm,光谱宽度为5.8 nm。首次在2 μm光纤激光器中采用NbSe2纳米颗粒实现耗散孤子锁模,证明了NbSe2纳米材料在2 μm波段的非线性光学调制能力,结合纳米颗粒的可集成特性,溶液法制备的NbSe2纳米材料有望成为一种新型的宽谱非线性光电调制材料/器件。
  • 图  1  溶液法制备的NbSe2纳米颗粒的SEM图和TEM图

    Figure  1.  SEM and TEM images of the NbSe2 nanoparticles prepared by solution process

    图  2  溶液法制备的NbSe2纳米颗粒的线性吸收和非线性吸收曲线

    Figure  2.  Linear absorption curve and nonlinear absorption curve of the liquid-processed NbSe2 nanoparticles

    图  3  实验装置示意图

    Figure  3.  Experimental setup of the mode-locked Tm3+ fiber laser with NbSe2 nanoparticles

    DCF: dispersion compensating fiber; TDF: thulium-doped fiber; WDM: wavelength division multiplexer; EYFL: erbium/ytterbium-codoped fiber laser; SMF: single-mode fiber.

    图  4  NbSe2锁模的2 μm光纤激光器输出功率曲线

    Figure  4.  Output power curve of the mode-locked 2 μm fiber laser with NbSe2 nanoparticles

    图  5  NbSe2纳米颗粒锁模的2 μm光纤激光器输出脉冲特性

    Figure  5.  Pulsing characteristics of the NbSe2 nanoparticles mode-locked 2 μm fiber laser

    图  6  NbSe2纳米颗粒锁模的2 μm光纤激光器光谱曲线

    Figure  6.  Laser spectrum of the NbSe2 nanoparticles mode-locked 2 μm fiber laser

  • [1] Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics and Laser Technology, 2012, 44(7): 2095-2099. doi: 10.1016/j.optlastec.2012.03.020
    [2] Fried N M, Murray K E. High-power thulium fiber laser ablation of urinary tissues at 1.94 μm[J]. Journal of Endourology, 2005, 19(1): 25-31. doi: 10.1089/end.2005.19.25
    [3] Leindecker L, Marandi A, Byer R L, et al. Octave-spanning ultrafast OPO with 2.6-6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser[J]. Optics Express, 2012, 20(7): 7046-7053. doi: 10.1364/OE.20.007046
    [4] Gomes L A, Orsila L, Jouhti T, et al. Picosecond SESAM-based ytterbium mode-locked fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(1): 129-136. doi: 10.1109/JSTQE.2003.822918
    [5] Sobon G, Sotor J, Pasternak I, et al. Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber[J]. Optics Express, 2013, 21(10): 127971-127976.
    [6] Meng Yafei, Li Yao, Xu Yongbing, et al. Carbon nanotube mode-locked thulium fiber laser with 200 nm tuning range[J]. Science Reports, 2017, 7: 45109. doi: 10.1038/srep45109
    [7] Luo Yongfeng, Zhou Yan, Tang Yulong, et al. Mode-locked Tm-doped fiber laser based on iron-doped carbon nitride nanosheets[J]. Laser Physics Letters, 2017, 14: 110002. doi: 10.1088/1612-202X/aa7d82
    [8] Sotor J, Sobon J, Kowalczyk M, et al. Ultrafast thulium-doped fiber laser mode locked with black phosphorus[J]. Optics Letters, 2015, 40(16): 3885-3888. doi: 10.1364/OL.40.003885
    [9] Luo Zhichao, Liu Meng, Liu Hao, et al. 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber[J]. Optics Letters, 2013, 38(24): 5212-5215. doi: 10.1364/OL.38.005212
    [10] Girish S G, Min G J, Shin K Y, et al. Two-dimensional metallic niobium diselenide for sub-micrometer-thin antennas in wireless communication systems[J]. ACS Nano, 2019. doi: 10.1021/acsnano.9b06732
    [11] Zhou Kaizhe, Zhao Min, Chang Mengjie, et al. Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets[J]. Small, 2014, 11(6): 694-701.
    [12] Komsa H P, Krasheninnikov A V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles[J]. Physical Review B, 2013, 88: 085318. doi: 10.1103/PhysRevB.88.085318
    [13] Chen Bohua, Zhang Xiaoyan, Wu Kan, et al. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2[J]. Optics Express, 2015, 23(20): 26723-26737. doi: 10.1364/OE.23.026723
    [14] Cheng Chen, Liu Hongliang, Tan Yang, et al. Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide[J]. Optics Express, 2016, 24(10): 10385-10390. doi: 10.1364/OE.24.010385
    [15] Liu Xinxing, Zhang Shuaiyi, Yan Zhengyu, et al. WSe2 as a saturable absorber for a passively Q-switched Ho, Pr: LLF laser at 2.95 μm[J]. Optical Materials Express, 2018, 8(5): 1213-1220. doi: 10.1364/OME.8.001213
    [16] Huang Y H, Chen R S, Zhang J R, et al. Electronic transport in NbSe2 two-dimensional nanostructures: Semiconducting characteristics and photoconductivity[J]. Nanoscale, 2015, 7: 18964. doi: 10.1039/C5NR05430C
    [17] Guo Jiahao, Shi Yantao, Zhu Chao, et al. Cost-effective and morphology-controllable niobium diselenides for highly efficient counter electrodes of dye-sensitized solar cells[J]. Journal of Materials Chemistry A, 2013, 1: 11874. doi: 10.1039/c3ta12349a
    [18] Kumagai N, Tanno K. Kinetic and structural characteristics of 3R-niobium disulfide as a positive material for secondary lithium batteries[J]. Electrochimica Acta, 1991, 36: 935. doi: 10.1016/0013-4686(91)85297-K
    [19] Shi Yiyuan, Long Hui, Liu Shunxiang, et al. Ultrasmall 2D NbSe2 based quantum dots used for low threshold ultrafast lasers[J]. Journal of Materials Chemistry C, 2018, 6: 12638-12642. doi: 10.1039/C8TC04635B
    [20] Shi Yiyuan, Liu Wenjia, Lü Wei, et al. Passively Q-switched Er-doped fiber laser based on NbSe2 quantum dot saturable absorber[C]//Asia Communications and Photonics Conference. 2018.
    [21] Chong A, Buckley J, Renninger W, et al. All-normal-dispersion femtosecond fiber laser[J]. Optics Express, 2006, 14(21): 10095-10100. doi: 10.1364/OE.14.010095
    [22] Tian Zhen, Wu kan, Kong Lingchen, et al. Mode-locked thulium fiber laser with MoS2[J]. Laser Physics Letters, 2015, 12: 065104. doi: 10.1088/1612-2011/12/6/065104
    [23] Jackson S D. Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers[J]. Optics Communications, 2004, 230(1/3): 197-203.
    [24] Tang Y L, Xu J Q, Chen W, et al. 150-W Tm3+-doped fiber lasers with different cooling techniques and output couplings[J]. Chinese Physics Letters, 2010, 27: 104207. doi: 10.1088/0256-307X/27/10/104207
    [25] Tamura K, Ippen E P, Haus H A, et al. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser[J]. Optics Letters, 1993, 18: 1080-1082. doi: 10.1364/OL.18.001080
    [26] Zhang H, Lu S B, Zheng J, et al. Molybdenum disulfide(MoS2) as a broadband saturable absorber for ultra-fast photonics[J]. Optics Express, 2014, 22(6): 7249-7260.
    [27] Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersion dielectric fibers. I. Anomalous dispersion[J]. Applied Physics Letters, 1973, 23: 142-144. doi: 10.1063/1.1654836
    [28] Huang Chongyuan, Wang Cong, Shang Wei, et al. Developing high energy dissipative soliton fiber lasers at 2 micron[J]. Science Reports, 2015, 5: 13680. doi: 10.1038/srep13680
  • 加载中
图(6)
计量
  • 文章访问数:  2320
  • HTML全文浏览量:  504
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-23
  • 修回日期:  2019-12-30
  • 刊出日期:  2019-12-26

目录

    /

    返回文章
    返回